コード例 #1
0
def load_reshape_dataset(fname):
    """
    Load dataset as OrderedDict. Each element of the
    OrderedDict is a multidimensional numpy array, in
    a way that getting the result for a specific 
    composition becomes very easy.
    """
    # read database header to get data structure
    header = read_header_database(fname)
    # temperature range; composition range
    Trange, crange = parse_header_database(header)

    # read database
    df = load_dataset(fname)

    # index
    df['idx'] = np.array([get_idx_from_fname(fname)
                          for fname in df['file']])

    # get shape of multidimensional array
    newshape = []
    for el, rng in crange.items():
        newshape.append(rng.lvls)

    # reshape flattened dataframe as dictionary of multidimensional arrays
    dataset = OrderedDict()
    for key in df.columns:
        dataset[key] = df[key].values.reshape(newshape)

    return dataset
コード例 #2
0
import Tcritical_regression_statsmodels as tr
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from scipy.optimize import root
from parse_database import read_header_database, parse_header_database
from plot_carbon_isopleth import (load_reshape_dataset, select_carbon_isopleth,
                                  plot_carbon_isopleth)

fname_dataset = '../databases/Tcritical.csv'

header = read_header_database(fname_dataset)
# Temperature range and compositions ranges
Trange, crange = parse_header_database(header)

# dataset as pandas DataFrame
dataset = tr.load_dataset(fname_dataset)

# dependent variable
dep_var = 'A1'

reg, results = {}, {}

reg, results = tr.regression_poly_2nd_deg(dataset=dataset,
                                          dep_var=dep_var,
                                          maxpvalue=.01,
                                          printsummary=False)

ax = tr.plot_fitting_results(results, dataset, dep_var)
ax.set_title('{}'.format(dep_var))