try: col_mapping[ ls[0] ] = ls[1] except IndexError: pass return col_mapping if __name__=="__main__": parser = ArgumentParser() parser.add_argument("-f", "--platereader_data", required=True, help="") parser.add_argument("-m", "--col_mapping_file", required=True, help="") parser.add_argument("-i", "--idx", type=int, help="") parser.add_argument("-p", "--pts", default=5, type=int, help="last number of points taken") opts = parser.parse_args() df = parse_platereader_data.read_data( opts.platereader_data ) if opts.idx: print "Time point taken:", df.Time[opts.idx] df = df[:opts.idx] data_Dict = np.mean( df.tail( opts.pts ) ).to_dict() # col:mP_value #print data_Dict col_mapping_dict = get_col_mapping( opts.col_mapping_file ) x = [] y = [] to_plot_Dict = {} # get a dict, { conc:mp_value } for col in col_mapping_dict.keys(): conc = float( col_mapping_dict[col] )
print ls try: col_mapping[ ls[0] ] = ls[1] except IndexError: pass return col_mapping if __name__=="__main__": parser = ArgumentParser() parser.add_argument("-f", "--table", required=True, help="") parser.add_argument("-m", "--col_mapping_file", help="") parser.add_argument("--sep", default="\t", help="") opts = parser.parse_args() data_frame = parse_platereader_data.read_data( opts.table ) print len(data_frame.columns), data_frame.columns x = np.array( map( float, data_frame.Time ) ) colors = iter(cm.rainbow(np.linspace(0, 1, len(data_frame.columns)))) #inhib_x = [] inhib_y = [] if opts.col_mapping_file: col_mapping_dict = get_col_mapping( opts.col_mapping_file ) for col, data in data_frame.iteritems(): if col=="Time": continue if col[0] in ["C", "D", "E", "F", "G"]: continue y = np.array( data_frame[col] )