def main(): parser, args = build_parser() if not (valid_env_vars()): parser.print_help() exit(1) print( "Pulling Pluralsight Reporting data starting from {0} and ending at {1}".format(args.start_date, args.end_date)) if args.users: print("Pulling users") get_users(args.output_folder) if args.course_completion: print("Pulling course completion") get_course_completion(args.start_date, args.end_date, args.output_folder) if args.course_usage: print("Pulling course usage") get_course_usage(args.start_date, args.end_date, args.output_folder)
def __init__(self, dataset: BaseQA, char_vocab=0, pos_vocab=0): tf.set_random_seed(4242) self.parser = build_parser() self.char_vocab = char_vocab self.pos_vocab = pos_vocab self.graph = tf.Graph() self.args = self.parser.parse_args() self.imap = {} self.inspect_op = [] self.feat_prop = None self._train_set = None self._test_set = None self._dev_set = None self.word_to_index, self.index_to_embedding = dataset.word_to_index, dataset.index_to_embedding self.index_to_word = {val: k for k, val in self.word_to_index.items()} self.vocab_size = len(self.index_to_embedding) if self.args.init_type == 'xavier': self.initializer = tf.contrib.layers.xavier_initializer() elif self.args.init_type == 'normal': self.initializer = tf.random_normal_initializer() elif self.args.init_type == 'uniform': self.initializer = tf.random_uniform_initializer( maxval=self.args.init, minval=-self.args.init) else: self.initializer = tf.contrib.layers.xavier_initializer() self.build_graph() _config_proto = tf.ConfigProto(allow_soft_placement=True, intra_op_parallelism_threads=8) self.sess = tf.Session(graph=self.graph, config=_config_proto) with self.graph.as_default(): self.sess.run(tf.global_variables_initializer()) self.saver = tf.train.Saver() self.ckpt_path = os.path.join(args.ckpt_path, self.__class__.__name__)
os.sched_setaffinity(os.getpid(), {0}) os.system("taskset -p 0xffffffffffffffffffffffff %d" % os.getpid()) if __name__ == "__main__": use_cuda = torch.cuda.is_available() device = torch.device('cuda' if use_cuda else 'cpu') checkpoint_name = './Checkpoint/' if not os.path.exists(checkpoint_name): os.makedirs(checkpoint_name) ######################################### INITIALIZE SETUP ############################################# # Parse Arguments parser = build_parser() args = parser.parse_args() # Environment env = gym.make(args.env) torch.manual_seed(args.seed) np.random.seed(args.seed) env.seed(args.seed) STATE_DIM = env.observation_space.shape[0] ACTION_DIM = env.action_space NUM_WINNERS = int(args.elite_rate * args.pop) BATCH_SIZE = args.pop STD_NOISE = args.mutation NUM_GRAD_MODELS = args.grad_models l1_loss = torch.nn.SmoothL1Loss() total_start_time = time.time()
import os from pyspark.sql import SparkSession from pyspark.ml.recommendation import ALS from pyspark.ml.evaluation import RegressionEvaluator import parser def string_to_list(x): x = x.replace(' ', '').split(',') return [float(y) for y in x] parser = parser.build_parser() (options, args) = parser.parse_args() APP_DIRECTORY = options.app_directory DATA_DIRECTORY = os.path.join(APP_DIRECTORY, 'data') MODELS_DIRECTORY = os.path.join(APP_DIRECTORY, 'models') RANKS = string_to_list(options.ranks) MAX_ITERS = string_to_list(options.max_iters) REG_PARAMS = string_to_list(options.reg_params) spark = SparkSession.builder.getOrCreate() interactions_train = spark.read \ .format('csv') \ .options(header='true', inferSchema = 'true') \ .load(os.path.join(DATA_DIRECTORY, 'interactions_train_full.csv')) interactions_val = spark.read \ .format('csv') \
tf.logging.info('end create_feed_data') tf.logging.info('start predict') preds = hyper_qa.predict(data) preds = [p[0] for p in preds] ids = np.argsort(preds)[::-1] tf.logging.info('end predict') print( f"Running time: {timeit.timeit('lambda: hyper_qa.predict(data)', number=1)}" ) # tf.logging.info(idx) for idx in ids[:top_n]: tf.logging.info(data.pos_raw[idx]) if __name__ == '__main__': args = build_parser().parse_args() word_to_index, index_to_embedding = load_embedding_from_disks( args.glove, with_indexes=True) tf.logging.info('Embedding loaded') dataset = get_ds(args.dataset_name, args.dataset, word_to_index, index_to_embedding, args.qmax, args.amax, args.char_min, args.num_neg) hyper_qa = HyperQA(dataset) tf.logging.info('HyperQA created') hyper_qa.train() # test_predict()
def post(self): parser = build_parser(PARSER_COUNTER) id = self.server_ctx.storage.add(parser) response = json.dumps({"id": id}) self.set_header('Content-Type', 'application/json') self.write(response)