def evaluate(self, sentences, ex_arcs): """LAS on either training or test sets""" act_arcs = minibatch_parse(sentences, self, self.config.batch_size) ex_arcs = tuple([(a[0], a[1], self.transducer.id2deprel[a[2]]) for a in pp] for pp in ex_arcs) stdout.flush() return score_arcs(act_arcs, ex_arcs)
def eval(self, sentences, ex_arcs): '''LAS on either training or test sets''' act_arcs = minibatch_parse(sentences, self, self.config.batch_size) ex_arcs = tuple([(a[0], a[1], self.transducer.id2deprel[a[2]]) for a in pp] for pp in ex_arcs) if FLAGS.output: import json with open(FLAGS.output, 'w+') as f: for row in act_arcs: f.write('%s\n' % json.dumps(row)) return score_arcs(act_arcs, ex_arcs)
def eval(self, sentences, ex_arcs): '''LAS on either training or test sets''' act_arcs = minibatch_parse(sentences, self, self.config.batch_size) ex_arcs = tuple([(a[0], a[1], self.transducer.id2deprel[a[2]]) for a in pp] for pp in ex_arcs) # code to print a list of arcs. obtained from 2017 bb import json with open('q2btest.txt', 'w+') as f: for row in act_arcs: f.write('%s\n' % json.dumps(row)) return score_arcs(act_arcs, ex_arcs)
def eval(self, sentences, ex_arcs, isTest=False): '''LAS on either training or test sets''' act_arcs = minibatch_parse(sentences, self, self.config.batch_size) ex_arcs = tuple([(a[0], a[1], self.transducer.id2deprel[a[2]]) for a in pp] for pp in ex_arcs) if isTest: f = open('q2btest.txt', 'w') for x in act_arcs: f.write("%s\n" % str(x)) f.close() return score_arcs(act_arcs, ex_arcs)
def eval(self, sentences, ex_arcs): '''LAS on either training or test sets''' act_arcs = minibatch_parse(sentences, self, self.config.batch_size) ex_arcs = tuple([(a[0], a[1], self.transducer.id2deprel[a[2]]) for a in pp] for pp in ex_arcs) # TA modification to generate q2b.txt import json with open('q2btest.txt', 'w+') as f: for row in act_arcs: f.write('%s\n' % json.dumps(row)) return score_arcs(act_arcs, ex_arcs)