コード例 #1
0
def local_setup():
    threads_config = Config(
        executors=[
            HighThroughputExecutor(
                label="theta_htex",
                # worker_debug=True,
                cores_per_worker=4,
                provider=CobaltProvider(
                    queue='debug-flat-quad',
                    account='CSC249ADCD01',
                    launcher=AprunLauncher(overrides="-d 64"),
                    worker_init='source activate parsl-issues',
                    init_blocks=1,
                    max_blocks=1,
                    min_blocks=1,
                    nodes_per_block=4,
                    cmd_timeout=60,
                    walltime='00:10:00',
                ),
            )
        ],
        monitoring=MonitoringHub(hub_port=55055,
                                 logging_level=logging.DEBUG,
                                 resource_monitoring_interval=10),
        strategy=None)
    parsl.load(threads_config)
コード例 #2
0
def local_setup():
    threads_config = Config(
        executors=[ThreadPoolExecutor(label='threads', max_threads=4)],
        monitoring=MonitoringHub(hub_address="127.0.0.1",
                                 hub_port=55055,
                                 logging_level=logging.INFO,
                                 resource_monitoring_interval=10))

    parsl.load(threads_config)
コード例 #3
0
import os

config = Config(
    executors=[
        HighThroughputExecutor(
            cores_per_worker=4,
            mem_per_worker=40,
            max_workers=4,
            worker_debug=True,
            address=address_by_hostname(),
            provider=SlurmProvider(
                'daenerys',
                worker_init=("source activate /cephfs/users/jbreynier/conda/parsl_env2 ; "
                            "export PYTHONPATH='{}:{{PYTHONPATH}}'").format(os.getcwd()),
                init_blocks=1,
                max_blocks=10,
                min_blocks=0,
                nodes_per_block=1,
                walltime='99:00:00',
                scheduler_options='#SBATCH --exclude=kg15-11 --cpus-per-task=16 --mem=160gb --time=99:00:00',
            ),
        ),
    ],
    monitoring=MonitoringHub(
       hub_address=address_by_hostname(),
       hub_port=55055,
       monitoring_debug=False,
       resource_monitoring_interval=10,
   ),
   checkpoint_mode='task_exit'
)
コード例 #4
0
ファイル: config.py プロジェクト: chaofengwu/VariOpt
def parslConfigFromCompute(compute):
    """Given a Compute instance, return a setup parsl configuration"""
    if isinstance(compute, EC2Compute):
        # NOTE: Assumes the paropt is being run on an EC2 instance with access to metadata service
        try:
            public_ip = getAWSPublicIP()

            # get the required environment variables
            required_env_vars = [
                "PAROPT_AWS_REGION", "PAROPT_AWS_KEY_NAME",
                "PAROPT_AWS_STATE_FILE", "PAROPT_AWS_IAM_INSTANCE_PROFILE_ARN"
            ]
            env_vars = {
                varname.replace('PAROPT_AWS_', '').lower(): os.getenv(varname)
                for varname in required_env_vars
            }
            missing_vars = [
                varname for varname, value in env_vars.items() if value == None
            ]
            if missing_vars:
                raise Exception(
                    "Missing required environment variables for running parsl with AWS:\n{}"
                    .format(missing_vars))

            parsl_config = Config(
                executors=[
                    HighThroughputExecutor(
                        label='htex_local',
                        address=public_ip,
                        worker_port_range=(54000, 54050),
                        interchange_port_range=(54051, 54100),
                        cores_per_worker=1,
                        max_workers=1,
                        provider=AWSProvider(
                            image_id=compute.ami,
                            instance_type=compute.instance_model,
                            worker_init=
                            'pip3 install git+https://[email protected]/globus-labs/ParaOpt@Chaofeng_modification',  # git+https://[email protected]/chaofengwu/paropt',#git+https://[email protected]/macintoshpie/paropt',
                            nodes_per_block=1,
                            init_blocks=1,
                            max_blocks=1,
                            min_blocks=0,
                            walltime='24:00:00',
                            spot_max_bid=2.0,
                            **env_vars),
                    )
                ],
                strategy=None,
            )

            return parsl_config
        except KeyError as e:
            logger.error('Failed initializing aws config: {}'.format(e))
            raise e
        except (HTTPError, URLError, OSError) as e:
            logger.error('Request to metadata service failed: {}'.format(e))
            raise e

    elif isinstance(compute, LocalCompute):
        return Config(executors=[
            ThreadPoolExecutor(max_threads=8, label='local_threads')
        ])

    elif isinstance(compute, PBSProCompute):
        # NOTE: Assumes the paropt is being run on an PBS node with access to metadata service
        try:
            parsl_config = Config(
                executors=[
                    HighThroughputExecutor(
                        label="htex",
                        heartbeat_period=15,
                        heartbeat_threshold=120,
                        worker_debug=True,
                        max_workers=4,
                        address=address_by_interface('ib0'),
                        provider=PBSProProvider(
                            launcher=MpiRunLauncher(),
                            # PBS directives (header lines): for array jobs pass '-J' option
                            # scheduler_options='#PBS -J 1-10',
                            scheduler_options=compute.scheduler_options,
                            # Command to be run before starting a worker, such as:
                            # 'module load Anaconda; source activate parsl_env'.
                            worker_init=compute.worker_init,
                            # number of compute nodes allocated for each block
                            nodes_per_block=1,
                            min_blocks=1,
                            max_blocks=5,
                            cpus_per_node=compute.cpus_per_node,
                            # medium queue has a max walltime of 24 hrs
                            walltime=compute.walltime),
                    ),
                ],
                monitoring=MonitoringHub(
                    hub_address=address_by_interface('ib0'),
                    hub_port=55055,
                    resource_monitoring_interval=10,
                ),
                strategy='simple',
                retries=3,
                app_cache=True,
                checkpoint_mode='task_exit')

            return parsl_config
        except KeyError as e:
            logger.error('Failed initializing PBSPro config: {}'.format(e))
            raise e

    else:
        raise Exception('Unknown Compute type')
コード例 #5
0
        worker_init=os.environ['PT_ENVSETUP'],  # Initial ENV setup
    ))

## This is based on the *default* executor (*DO NOT USE* due to this
## executor is not recommended by Yadu)
coriLogin = ThreadPoolExecutor(label='coriLogin',
                               managed=True,
                               max_threads=2,
                               storage_access=[],
                               thread_name_prefix='',
                               working_dir=None)

###################################################
###################################################
###################################################

##
## Finally, assemble the full Parsl configuration
##   [Be sure to specify your needed executor(s)]

config = Config(app_cache=True,
                checkpoint_mode='task_exit',
                executors=[knlMj],
                monitoring=MonitoringHub(
                    hub_address=address_by_hostname(),
                    hub_port=55055,
                    logging_level=logging.INFO,
                    resource_monitoring_interval=60,
                ),
                retries=2)
コード例 #6
0
ファイル: workflow.py プロジェクト: Parsl/lsst-pipelines
# TODO: proper boolean switch here to switch between checkpointing and
# monitoring, as they do not work together at the moment.
#  - see https://github.com/Parsl/parsl/issues/1014

config = parsl.config.Config(
    executors=[
        parsl.executors.ThreadPoolExecutor(label="management", max_threads=20),
        parsl.executors.ThreadPoolExecutor(label="heavy", max_threads=3),
    ],

    # monitoring config from
    # https://parsl.readthedocs.io/en/latest/userguide/monitoring.html
    # modified to add hub_port - see https://github.com/Parsl/parsl/issues/1010
    monitoring=MonitoringHub(hub_address=address_by_hostname(),
                             logging_level=logging.INFO,
                             resource_monitoring_interval=10,
                             hub_port=30733))

# config.checkpoint_mode = 'task_exit'

REPO_BASE = "REPO"

logger.info("Getting checkpoint files")
config.checkpoint_files = parsl.utils.get_all_checkpoints()
logger.info("Checkpoint files: {}".format(config.checkpoint_files))


class RepoInfo:
    def __init__(self, repo_base, rerun=None):
        self.repo_base = repo_base
        self.rerun = rerun
コード例 #7
0
ファイル: test_udp_simple.py プロジェクト: timarmstrong/parsl
from parsl import *
# from parsl.monitoring.db_logger import MonitoringConfig
from parsl.monitoring.monitoring import MonitoringHub
from parsl.config import Config
from parsl.executors import ThreadPoolExecutor
import logging

# parsl.set_stream_logger()

threads_config = Config(
    executors=[ThreadPoolExecutor(label='threads', max_threads=4)],
    monitoring=MonitoringHub(
        hub_address="127.0.0.1",
        hub_port=55055,
        logging_level=logging.INFO,
        resource_monitoring_interval=10,
    ))

dfk = DataFlowKernel(config=threads_config)


@App('python', dfk)
def sleeper(dur=25):
    import time
    time.sleep(dur)


@App('python', dfk)
def cpu_stress(dur=30):
    import time
    s = 0
コード例 #8
0
            heartbeat_period=15,
            heartbeat_threshold=120,
            worker_debug=True,
            max_workers=4,
            address=address_by_interface('ib0'),
            provider=PBSProProvider(
                launcher=MpiRunLauncher(),
                # PBS directives (header lines): for array jobs pass '-J' option
                scheduler_options='#PBS -J 1-10',
                # Command to be run before starting a worker, such as:
                # 'module load Anaconda; source activate parsl_env'.
                worker_init='',
                # number of compute nodes allocated for each block
                nodes_per_block=3,
                min_blocks=3,
                max_blocks=5,
                cpus_per_node=24,
                # medium queue has a max walltime of 24 hrs
                walltime='24:00:00'),
        ),
    ],
    monitoring=MonitoringHub(
        hub_address=address_by_interface('ib0'),
        hub_port=55055,
        resource_monitoring_interval=10,
    ),
    strategy='simple',
    retries=3,
    app_cache=True,
    checkpoint_mode='task_exit')
コード例 #9
0
ファイル: aspire.py プロジェクト: MTrulove/GDC-Pipeline
# medium queue
nodes = 4
walltime = '24:00:00'
max_blocks = 3

config = Config(executors=[
    HighThroughputExecutor(
        label="htex",
        cores_per_worker=3,
        address=address_by_interface('ib0'),
        provider=PBSProProvider(
            launcher=MpiRunLauncher(),
            scheduler_options='#PBS -P 11001079',
            worker_init='module load gromacs; export PYTHONPATH={}:$PYTHONPATH'
            .format(os.path.abspath('.')),
            nodes_per_block=nodes,
            max_blocks=max_blocks,
            cpus_per_node=24,
            walltime=walltime),
    ),
],
                monitoring=MonitoringHub(
                    hub_address=address_by_interface('ib0'),
                    hub_port=55055,
                    logging_level=logging.INFO,
                    resource_monitoring_interval=10,
                ),
                strategy='simple',
                retries=3)
コード例 #10
0
def workflow_config(name,
                    nodes,
                    cores_per_node=24,
                    interval=30,
                    monitor=False):
    import parsl
    from parsl.config import Config
    from parsl.channels import LocalChannel
    from parsl.launchers import SrunLauncher
    from parsl.providers import LocalProvider
    from parsl.addresses import address_by_interface
    from parsl.executors import HighThroughputExecutor
    from parsl.monitoring.monitoring import MonitoringHub

    parsl.set_stream_logger()
    parsl.set_file_logger('script.output', level=logging.DEBUG)

    logging.info('Configuring Parsl Workflow Infrastructure')

    #Read where datasets are...
    env_str = str()
    with open('parsl.env', 'r') as reader:
        env_str = reader.read()

    logging.info(f'Task Environment {env_str}')

    mon_hub = MonitoringHub(
        workflow_name=name,
        hub_address=address_by_interface('ib0'),
        hub_port=60001,
        resource_monitoring_enabled=True,
        monitoring_debug=False,
        resource_monitoring_interval=interval,
    ) if monitor else None

    config = Config(
        executors=[
            HighThroughputExecutor(
                label=name,
                # Optional: The network interface on node 0 which compute nodes can communicate with.
                # address=address_by_interface('enp4s0f0' or 'ib0')
                address=address_by_interface('ib0'),
                # one worker per manager / node
                max_workers=cores_per_node,
                provider=LocalProvider(
                    channel=LocalChannel(script_dir='.'),
                    # make sure the nodes_per_block matches the nodes requested in the submit script in the next step
                    nodes_per_block=nodes,
                    # make sure
                    launcher=SrunLauncher(overrides=f'-c {cores_per_node}'),
                    cmd_timeout=120,
                    init_blocks=1,
                    max_blocks=1,
                    worker_init=env_str,
                ),
            )
        ],
        monitoring=mon_hub,
        strategy=None,
    )

    logging.info('Loading Parsl Config')

    parsl.load(config)
    return