def test_paginate_list(self, m): r = [ {"dict": 0, "col": "A"}, {"dict": 1, "col": "B"} ] overflow = [ {"dict": 2, "col": "C"}, {"dict": 3, "col": "D"}, {"dict": 4, "col": "E"} ] r_table = Table() r_table.concat(Table(r)) r_table.concat(Table(overflow)) data = { 'start': 0, 'max': 2 } object_name = "Listme" m.post(self.api_url + f'List/{object_name}.json', json=self.paginate_callback) assert_matching_tables(self.bc._paginate_list(r, data, object_name), r_table)
def _paginate_list(self, response, data, object_name, field="response_data"): """ Internal method to paginate through and concatenate results of lists larger than max `Args:` response: list of dicts Data from an initial list call data: dict Start, max, and kwargs from initial list call object_name: str Name of the object being listed """ r_table = Table(response) max_ct = data['max'] # Flag to simulate do-while first_run = True while first_run or len(response) == max_ct: first_run = False data['start'] += max_ct response = self._post_request(data, "List", object_name)[field] r_table.concat(Table(response)) return r_table
def get_workflows_and_jobs(project_id): project = client.projects.get(project_id) # Get workflow and the job data from the project workflows = [dict(workflow) for workflow in project['workflows']] table = Table(workflows) # We need to distinguish between jobs and workflows later on, # so adding a column noting these are workflows. table.add_column('object_type', 'workflow') # Imports and other scripts are separated out in the response but they are all treated as jobs # so we pull and combine jobs = [dict(job) for job in project['scripts']] imports = [dict(import_job) for import_job in project['imports']] full_list = jobs + imports jobs_table = Table(full_list) jobs_table.add_column('object_type', 'job') # Here we combine the table of jobs and imports into the table of workflows. # The object_type column lets us distinguish between the types, # which is necessary for the get_last_success function. table.concat(jobs_table) return table
def geocode_address_batch(self, table): """ Geocode multiple addresses from a parsons table. The table must **only** include the following columns in the following order. .. list-table:: :widths: 40 :header-rows: 1 * - Column Data * - Unique ID * - Street * - City * - State * - Zipcode `Args:` table: Parsons Table A Parsons table `Returns:` A Parsons table """ logger.info(f'Geocoding {table.num_rows} records.') chunked_tables = table.chunk(BATCH_SIZE) batch_count = 1 records_processed = 0 geocoded_tbl = Table([[]]) for tbl in chunked_tables: geocoded_tbl.concat( Table(petl.fromdicts(self.cg.addressbatch(tbl)))) records_processed += tbl.num_rows logger.info( f'{records_processed} of {table.num_rows} records processed.') batch_count += 1 return geocoded_tbl
def get_activity_types(self): """ Get activity types `Args:` `filters: dict` Optional; pass additional parameters to filter the records returned. See `Copper documentation <https://developer.copper.com/?version=latest#6bd339f1-f0de-48b4-8c34-5a5e245e036f>`_ for choices `Returns:` List of dicts of Parsons Tables: * activitiy_types """ # noqa: E501,E261 logger.info("Retrieving activity types.") response = self.paginate_request('/activity_types/', req_type='GET') orig_table = Table(response) at_user = orig_table.long_table([], 'user', prepend=False) at_sys = orig_table.long_table([], 'system', prepend=False) Table.concat(at_sys, at_user) return [{'name': 'activity_types', 'tbl': at_sys}]
class TestParsonsTable(unittest.TestCase): def setUp(self): # Create Table object self.lst = [{ 'a': 1, 'b': 2, 'c': 3 }, { 'a': 4, 'b': 5, 'c': 6 }, { 'a': 7, 'b': 8, 'c': 9 }, { 'a': 10, 'b': 11, 'c': 12 }, { 'a': 13, 'b': 14, 'c': 15 }] self.lst_dicts = [{'first': 'Bob', 'last': 'Smith'}] self.tbl = Table(self.lst_dicts) # Create a tmp dir os.mkdir('tmp') def tearDown(self): # Delete tmp folder and files shutil.rmtree('tmp') def test_from_list_of_dicts(self): tbl = Table(self.lst) # Test Iterate and is list like self.assertEqual(tbl[0], {'a': 1, 'b': 2, 'c': 3}) def test_from_list_of_lists(self): list_of_lists = [ ['a', 'b', 'c'], [1, 2, 3], [4, 5, 6], ] tbl = Table(list_of_lists) self.assertEqual(tbl[0], {'a': 1, 'b': 2, 'c': 3}) def test_from_petl(self): nrows = 10 ptbl = petl.dummytable(numrows=nrows) tbl = Table(ptbl) self.assertEqual(tbl.num_rows, nrows) def test_from_invalid_list(self): # Tests that a table can't be created from a list of invalid items list_of_invalid = [1, 2, 3] self.assertRaises(ValueError, Table, list_of_invalid) def test_from_empty_petl(self): self.assertRaises(ValueError, Table, None) def test_from_empty_list(self): # Just ensure this doesn't throw an error Table() Table([]) Table([[]]) def test_materialize(self): # Simple test that materializing doesn't change the table tbl_materialized = Table(self.lst_dicts) tbl_materialized.materialize() assert_matching_tables(self.tbl, tbl_materialized) def test_materialize_to_file(self): # Simple test that materializing doesn't change the table tbl_materialized = Table(self.lst_dicts) _ = tbl_materialized.materialize_to_file() assert_matching_tables(self.tbl, tbl_materialized) def test_empty_column(self): # Test that returns True on an empty column and False on a populated one. tbl = Table([['a', 'b'], ['1', None], ['2', None]]) self.assertTrue(tbl.empty_column('b')) self.assertFalse(tbl.empty_column('a')) def test_from_columns(self): header = ['col1', 'col2'] col1 = [1, 2, 3] col2 = ['a', 'b', 'c'] tbl = Table.from_columns([col1, col2], header=header) self.assertEqual(tbl[0], {'col1': 1, 'col2': 'a'}) # Removing this test since it is an optional dependency. """ def test_from_datafame(self): import pandas # Assert creates table without index tbl = Table(self.lst) tbl_from_df = Table.from_dataframe(tbl.to_dataframe()) assert_matching_tables(tbl, tbl_from_df) def test_to_dataframe(self): # Is a dataframe self.assertIsInstance(self.tbl.to_dataframe(), pandas.core.frame.DataFrame) """ def test_to_petl(self): # Is a petl table self.assertIsInstance(self.tbl.to_petl(), petl.io.json.DictsView) def test_to_html(self): html_file = 'tmp/test.html' # Test writing file self.tbl.to_html(html_file) # Test written correctly html = ("<table class='petl'>\n" "<thead>\n" "<tr>\n" "<th>first</th>\n" "<th>last</th>\n" "</tr>\n" "</thead>\n" "<tbody>\n" "<tr>\n" "<td>Bob</td>\n" "<td>Smith</td>\n" "</tr>\n" "</tbody>\n" "</table>\n") with open(html_file, 'r') as f: self.assertEqual(f.read(), html) def test_to_temp_html(self): # Test write to object path = self.tbl.to_html() # Written correctly html = ("<table class='petl'>\n" "<thead>\n" "<tr>\n" "<th>first</th>\n" "<th>last</th>\n" "</tr>\n" "</thead>\n" "<tbody>\n" "<tr>\n" "<td>Bob</td>\n" "<td>Smith</td>\n" "</tr>\n" "</tbody>\n" "</table>\n") with open(path, 'r') as f: self.assertEqual(f.read(), html) def _assert_expected_csv(self, path, orig_tbl): result_tbl = Table.from_csv(path) assert_matching_tables(orig_tbl, result_tbl) def test_to_from_csv(self): path = 'tmp/test.csv' self.tbl.to_csv(path) self._assert_expected_csv(path, self.tbl) os.remove(path) def test_to_from_csv_compressed(self): path = 'tmp/test.csv.gz' self.tbl.to_csv(path) self._assert_expected_csv(path, self.tbl) os.remove(path) def test_to_from_temp_csv(self): path = self.tbl.to_csv() self._assert_expected_csv(path, self.tbl) def test_to_from_temp_csv_compressed(self): path = self.tbl.to_csv(temp_file_compression='gzip') self._assert_expected_csv(path, self.tbl) def test_from_csv_string(self): path = self.tbl.to_csv() # Pull the file into a string with open(path, 'r') as f: str = f.read() result_tbl = Table.from_csv_string(str) assert_matching_tables(self.tbl, result_tbl) def test_append_csv_compressed(self): path = self.tbl.to_csv(temp_file_compression='gzip') append_tbl = Table([{'first': 'Mary', 'last': 'Nichols'}]) append_tbl.append_csv(path) result_tbl = Table.from_csv(path) # Combine tables, so we can check the resulting file self.tbl.concat(append_tbl) assert_matching_tables(self.tbl, result_tbl) def test_from_csv_raises_on_empty_file(self): # Create empty file path = 'tmp/empty.csv' open(path, 'a').close() self.assertRaises(ValueError, Table.from_csv, path) def test_to_csv_zip(self): try: # Test using the to_csv() method self.tbl.to_csv('myzip.zip') tmp = zip_archive.unzip_archive('myzip.zip') assert_matching_tables(self.tbl, Table.from_csv(tmp)) # Test using the to_csv_zip() method self.tbl.to_zip_csv('myzip.zip') tmp = zip_archive.unzip_archive('myzip.zip') assert_matching_tables(self.tbl, Table.from_csv(tmp)) finally: os.unlink('myzip.zip') def test_to_civis(self): # Not really sure the best way to do this at the moment. pass def test_to_from_json(self): path = 'tmp/test.json' self.tbl.to_json(path) result_tbl = Table.from_json(path) assert_matching_tables(self.tbl, result_tbl) os.remove(path) def test_to_from_json_compressed(self): path = 'tmp/test.json.gz' self.tbl.to_json(path) result_tbl = Table.from_json(path) assert_matching_tables(self.tbl, result_tbl) os.remove(path) def test_to_from_temp_json(self): path = self.tbl.to_json() result_tbl = Table.from_json(path) assert_matching_tables(self.tbl, result_tbl) def test_to_from_temp_json_compressed(self): path = self.tbl.to_json(temp_file_compression='gzip') result_tbl = Table.from_json(path) assert_matching_tables(self.tbl, result_tbl) def test_to_from_json_line_delimited(self): path = 'tmp/test.json' self.tbl.to_json(path, line_delimited=True) result_tbl = Table.from_json(path, line_delimited=True) assert_matching_tables(self.tbl, result_tbl) os.remove(path) def test_to_from_json_line_delimited_compressed(self): path = 'tmp/test.json.gz' self.tbl.to_json(path, line_delimited=True) result_tbl = Table.from_json(path, line_delimited=True) assert_matching_tables(self.tbl, result_tbl) os.remove(path) def test_columns(self): # Test that columns are listed correctly self.assertEqual(self.tbl.columns, ['first', 'last']) def test_add_column(self): # Test that a new column is added correctly self.tbl.add_column('middle', index=1) self.assertEqual(self.tbl.columns[1], 'middle') def test_column_add_dupe(self): # Test that we can't add an existing column name self.assertRaises(ValueError, self.tbl.add_column, 'first') def test_remove_column(self): # Test that column is removed correctly self.tbl.remove_column('first') self.assertNotEqual(self.tbl.data[0], 'first') def test_rename_column(self): # Test that you can rename a column self.tbl.rename_column('first', 'f') self.assertEqual(self.tbl.columns[0], 'f') def test_column_rename_dupe(self): # Test that we can't rename to a column that already exists self.assertRaises(ValueError, self.tbl.rename_column, 'last', 'first') def test_fill_column(self): # Test that the column is filled tbl = Table(self.lst) # Fixed Value tbl.fill_column('c', 0) self.assertEqual(list(tbl.table['c']), [0] * tbl.num_rows) # Calculated Value tbl.fill_column('c', lambda x: x['b'] * 2) self.assertEqual(list(tbl.table['c']), [x['b'] * 2 for x in self.lst]) def test_fillna_column(self): # Test that None values in the column are filled self.lst = [{ 'a': 1, 'b': 2, 'c': 3 }, { 'a': 4, 'b': 5, 'c': None }, { 'a': 7, 'b': 8, 'c': 9 }, { 'a': 10, 'b': 11, 'c': None }, { 'a': 13, 'b': 14, 'c': 15 }] # Fixed Value only tbl = Table(self.lst) tbl.fillna_column('c', 0) self.assertEqual(list(tbl.table['c']), [3, 0, 9, 0, 15]) def test_move_column(self): # Test moving a column from end to front self.tbl.move_column('last', 0) self.assertEqual(self.tbl.columns[0], 'last') def test_convert_column(self): # Test that column updates self.tbl.convert_column('first', 'upper') self.assertEqual(self.tbl[0], {'first': 'BOB', 'last': 'Smith'}) def test_convert_columns_to_str(self): # Test that all columns are string mixed_raw = [{ 'col1': 1, 'col2': 2, 'col3': 3 }, { 'col1': 'one', 'col2': 2, 'col3': [3, 'three', 3.0] }, { 'col1': { 'one': 1, "two": 2.0 }, 'col2': None, "col3": 'three' }] tbl = Table(mixed_raw) tbl.convert_columns_to_str() cols = tbl.get_columns_type_stats() type_set = {i for x in cols for i in x['type']} self.assertTrue('str' in type_set and len(type_set) == 1) def test_convert_table(self): # Test that the table updates self.tbl.convert_table('upper') self.assertEqual(self.tbl[0], {'first': 'BOB', 'last': 'SMITH'}) def test_coalesce_columns(self): # Test coalescing into an existing column test_raw = [ { 'first': 'Bob', 'last': 'Smith', 'lastname': None }, { 'first': 'Jane', 'last': '', 'lastname': 'Doe' }, { 'first': 'Mary', 'last': 'Simpson', 'lastname': 'Peters' }, ] tbl = Table(test_raw) tbl.coalesce_columns('last', ['last', 'lastname']) expected = Table([ { 'first': 'Bob', 'last': 'Smith' }, { 'first': 'Jane', 'last': 'Doe' }, { 'first': 'Mary', 'last': 'Simpson' }, ]) assert_matching_tables(tbl, expected) # Test coalescing into a new column tbl = Table(test_raw) tbl.coalesce_columns('new_last', ['last', 'lastname']) expected = Table([ { 'first': 'Bob', 'new_last': 'Smith' }, { 'first': 'Jane', 'new_last': 'Doe' }, { 'first': 'Mary', 'new_last': 'Simpson' }, ]) assert_matching_tables(tbl, expected) def test_unpack_dict(self): test_dict = [{'a': 1, 'b': {'nest1': 1, 'nest2': 2}}] test_table = Table(test_dict) # Test that dict at the top level test_table.unpack_dict('b', prepend=False) self.assertEqual(test_table.columns, ['a', 'nest1', 'nest2']) def test_unpack_list(self): test_table = Table([{'a': 1, 'b': [1, 2, 3]}]) # Test that list at the top level test_table.unpack_list('b', replace=True) self.assertEqual(['a', 'b_0', 'b_1', 'b_2'], test_table.columns) def test_unpack_list_with_mixed_col(self): # Test unpacking column with non-list items mixed_tbl = Table([{ 'id': 1, 'tag': [1, 2, None, 4] }, { 'id': 2, 'tag': None }]) tbl_unpacked = Table(mixed_tbl.unpack_list('tag')) # Make sure result has the right number of columns self.assertEqual(len(tbl_unpacked.columns), 5) result_table = Table([{ 'id': 1, 'tag_0': 1, 'tag_1': 2, 'tag_2': None, 'tag_3': 4 }, { 'id': 2, 'tag_0': None, 'tag_1': None, 'tag_2': None, 'tag_3': None }]) # Check that the values for both rows are distributed correctly self.assertEqual(result_table.data[0] + result_table.data[1], tbl_unpacked.data[0] + tbl_unpacked.data[1]) def test_unpack_nested_columns_as_rows(self): # A Table with mixed content test_table = Table([{ 'id': 1, 'nested': { 'A': 1, 'B': 2, 'C': 3 }, 'extra': 'hi' }, { 'id': 2, 'nested': { 'A': 4, 'B': 5, 'I': 6 }, 'extra': 'hi' }, { 'id': 3, 'nested': 'string!', 'extra': 'hi' }, { 'id': 4, 'nested': None, 'extra': 'hi' }, { 'id': 5, 'nested': ['this!', 'is!', 'a!', 'list!'], 'extra': 'hi' }]) standalone = test_table.unpack_nested_columns_as_rows('nested') # Check that the columns are as expected self.assertEqual(['uid', 'id', 'nested', 'value'], standalone.columns) # Check that the row count is as expected self.assertEqual(standalone.num_rows, 11) # Check that the uids are unique, indicating that each row is unique self.assertEqual(len({row['uid'] for row in standalone}), 11) def test_unpack_nested_columns_as_rows_expanded(self): test_table = Table([{ 'id': 1, 'nested': { 'A': 1, 'B': 2, 'C': 3 }, 'extra': 'hi' }, { 'id': 2, 'nested': { 'A': 4, 'B': 5, 'I': 6 }, 'extra': 'hi' }, { 'id': 3, 'nested': 'string!', 'extra': 'hi' }, { 'id': 4, 'nested': None, 'extra': 'hi' }, { 'id': 5, 'nested': ['this!', 'is!', 'a!', 'list!'], 'extra': 'hi' }]) expanded = test_table.unpack_nested_columns_as_rows( 'nested', expand_original=True) # Check that the columns are as expected self.assertEqual(['uid', 'id', 'extra', 'nested', 'nested_value'], expanded.columns) # Check that the row count is as expected self.assertEqual(expanded.num_rows, 12) # Check that the uids are unique, indicating that each row is unique self.assertEqual(len({row['uid'] for row in expanded}), 12) def test_cut(self): # Test that the cut works correctly cut_tbl = self.tbl.cut('first') self.assertEqual(cut_tbl.columns, ['first']) def test_row_select(self): tbl = Table([['foo', 'bar', 'baz'], ['c', 4, 9.3], ['a', 2, 88.2], ['b', 1, 23.3]]) expected = Table([{'foo': 'a', 'bar': 2, 'baz': 88.2}]) # Try with this method select_tbl = tbl.select_rows("{foo} == 'a' and {baz} > 88.1") self.assertEqual(select_tbl.data[0], expected.data[0]) # And try with this method select_tbl2 = tbl.select_rows( lambda row: row.foo == 'a' and row.baz > 88.1) self.assertEqual(select_tbl2.data[0], expected.data[0]) def test_remove_null_rows(self): # Test that null rows are removed from a single column null_table = Table([{'a': 1, 'b': 2}, {'a': 1, 'b': None}]) self.assertEqual(null_table.remove_null_rows('b').num_rows, 1) # Teest that null rows are removed from multiple columns null_table = Table([{ 'a': 1, 'b': 2, 'c': 3 }, { 'a': 1, 'b': None, 'c': 3 }]) self.assertEqual(null_table.remove_null_rows(['b', 'c']).num_rows, 1) def test_long_table(self): # Create a long table, that is 4 rows long tbl = Table([{'id': 1, 'tag': [1, 2, 3, 4]}]) self.assertEqual(tbl.long_table(['id'], 'tag').num_rows, 4) # Assert that column has been dropped self.assertEqual(tbl.columns, ['id']) # Assert that column has been retained tbl_keep = Table([{'id': 1, 'tag': [1, 2, 3, 4]}]) tbl_keep.long_table(['id'], 'tag', retain_original=True) self.assertEqual(tbl_keep.columns, ['id', 'tag']) def test_long_table_with_na(self): # Create a long table that is 4 rows long tbl = Table([{'id': 1, 'tag': [1, 2, 3, 4]}, {'id': 2, 'tag': None}]) self.assertEqual(tbl.long_table(['id'], 'tag').num_rows, 4) # Assert that column has been dropped self.assertEqual(tbl.columns, ['id']) # Assert that column has been retained tbl_keep = Table([{ 'id': 1, 'tag': [1, 2, 3, 4] }, { 'id': 2, 'tag': None }]) tbl_keep.long_table(['id'], 'tag', retain_original=True) self.assertEqual(tbl_keep.columns, ['id', 'tag']) def test_rows(self): # Test that there is only one row in the table self.assertEqual(self.tbl.num_rows, 1) def test_first(self): # Test that the first value in the table is returned. self.assertEqual(self.tbl.first, 'Bob') # Test empty value returns None empty_tbl = Table([[1], [], [3]]) self.assertIsNone(empty_tbl.first) def test_get_item(self): # Test indexing on table # Test a valid column tbl = Table(self.lst) lst = [1, 4, 7, 10, 13] self.assertEqual(tbl['a'], lst) # Test a valid row row = {'a': 4, 'b': 5, 'c': 6} self.assertEqual(tbl[1], row) def test_column_data(self): # Test that that the data in the column is returned as a list # Test a valid column tbl = Table(self.lst) lst = [1, 4, 7, 10, 13] self.assertEqual(tbl.column_data('a'), lst) # Test an invalid column self.assertRaises(TypeError, tbl['c']) def test_row_data(self): # Test a valid column tbl = Table(self.lst) row = {'a': 4, 'b': 5, 'c': 6} self.assertEqual(tbl.row_data(1), row) def test_stack(self): tbl1 = self.tbl.select_rows(lambda x: x) tbl2 = Table([{'first': 'Mary', 'last': 'Nichols'}]) # Different column names shouldn't matter for stack() tbl3 = Table([{'f': 'Lucy', 'l': 'Peterson'}]) tbl1.stack(tbl2, tbl3) expected_tbl = Table(petl.stack(self.tbl.table, tbl2.table, tbl3.table)) assert_matching_tables(expected_tbl, tbl1) def test_concat(self): tbl1 = self.tbl.select_rows(lambda x: x) tbl2 = Table([{'first': 'Mary', 'last': 'Nichols'}]) tbl3 = Table([{'first': 'Lucy', 'last': 'Peterson'}]) tbl1.concat(tbl2, tbl3) expected_tbl = Table(petl.cat(self.tbl.table, tbl2.table, tbl3.table)) assert_matching_tables(expected_tbl, tbl1) def test_chunk(self): test_table = Table(petl.randomtable(3, 499, seed=42)) chunks = test_table.chunk(100) # Assert rows of each is 100 for c in chunks[:3]: self.assertEqual(100, c.num_rows) # Assert last table is 99 self.assertEqual(99, chunks[4].num_rows) def test_match_columns(self): raw = [ { 'first name': 'Mary', 'LASTNAME': 'Nichols', 'Middle__Name': 'D' }, { 'first name': 'Lucy', 'LASTNAME': 'Peterson', 'Middle__Name': 'S' }, ] tbl = Table(raw) desired_raw = [ { 'first_name': 'Mary', 'middle_name': 'D', 'last_name': 'Nichols' }, { 'first_name': 'Lucy', 'middle_name': 'S', 'last_name': 'Peterson' }, ] desired_tbl = Table(desired_raw) # Test with fuzzy matching tbl.match_columns(desired_tbl.columns) assert_matching_tables(desired_tbl, tbl) # Test disable fuzzy matching, and fail due due to the missing cols self.assertRaises(TypeError, Table(raw).match_columns, desired_tbl.columns, fuzzy_match=False, if_missing_columns='fail') # Test disable fuzzy matching, and fail due to the extra cols self.assertRaises(TypeError, Table(raw).match_columns, desired_tbl.columns, fuzzy_match=False, if_extra_columns='fail') # Test table that already has the right columns, shouldn't need fuzzy match tbl = Table(desired_raw) tbl.match_columns(desired_tbl.columns, fuzzy_match=False, if_missing_columns='fail', if_extra_columns='fail') assert_matching_tables(desired_tbl, tbl) # Test table with missing col, verify the missing col gets added by default tbl = Table([ { 'first name': 'Mary', 'LASTNAME': 'Nichols' }, { 'first name': 'Lucy', 'LASTNAME': 'Peterson' }, ]) tbl.match_columns(desired_tbl.columns) desired_tbl = ( Table(desired_raw).remove_column('middle_name').add_column( 'middle_name', index=1)) assert_matching_tables(desired_tbl, tbl) # Test table with extra col, verify the extra col gets removed by default tbl = Table([ { 'first name': 'Mary', 'LASTNAME': 'Nichols', 'Age': 32, 'Middle__Name': 'D' }, { 'first name': 'Lucy', 'LASTNAME': 'Peterson', 'Age': 26, 'Middle__Name': 'S' }, ]) desired_tbl = Table(desired_raw) tbl.match_columns(desired_tbl.columns) assert_matching_tables(desired_tbl, tbl) # Test table with two columns that normalize the same and aren't in desired cols, verify # they both get removed. tbl = Table([ { 'first name': 'Mary', 'LASTNAME': 'Nichols', 'Age': 32, 'Middle__Name': 'D', 'AGE': None }, { 'first name': 'Lucy', 'LASTNAME': 'Peterson', 'Age': 26, 'Middle__Name': 'S', 'AGE': None }, ]) tbl.match_columns(desired_tbl.columns) assert_matching_tables(desired_tbl, tbl) # Test table with two columns that match desired cols, verify only the first gets kept. tbl = Table([ { 'first name': 'Mary', 'LASTNAME': 'Nichols', 'First Name': None, 'Middle__Name': 'D' }, { 'first name': 'Lucy', 'LASTNAME': 'Peterson', 'First Name': None, 'Middle__Name': 'S' }, ]) tbl.match_columns(desired_tbl.columns) assert_matching_tables(desired_tbl, tbl) def test_to_dicts(self): self.assertEqual(self.lst, Table(self.lst).to_dicts()) self.assertEqual(self.lst_dicts, self.tbl.to_dicts()) def test_reduce_rows(self): table = [['foo', 'bar'], ['a', 3], ['a', 7], ['b', 2], ['b', 1], ['b', 9], ['c', 4]] expected = [{ "foo": "a", "barsum": 10 }, { "foo": "b", "barsum": 12 }, { "foo": "c", "barsum": 4 }] ptable = Table(table) ptable.reduce_rows( 'foo', lambda key, rows: [key, sum(row[1] for row in rows)], ['foo', 'barsum']) self.assertEqual(expected, ptable.to_dicts()) def test_map_columns_exact(self): input_tbl = Table([['fn', 'ln', 'MID'], ['J', 'B', 'H']]) column_map = { 'first_name': ['fn', 'first'], 'last_name': ['last', 'ln'], 'middle_name': ['mi'] } exact_tbl = Table([['first_name', 'last_name', 'MID'], ['J', 'B', 'H']]) input_tbl.map_columns(column_map) assert_matching_tables(input_tbl, exact_tbl) def test_map_columns_fuzzy(self): input_tbl = Table([['fn', 'ln', 'Mi_'], ['J', 'B', 'H']]) column_map = { 'first_name': ['fn', 'first'], 'last_name': ['last', 'ln'], 'middle_name': ['mi'] } fuzzy_tbl = Table([['first_name', 'last_name', 'middle_name'], ['J', 'B', 'H']]) input_tbl.map_columns(column_map, exact_match=False) assert_matching_tables(input_tbl, fuzzy_tbl) def test_get_column_max_with(self): tbl = Table([['a', 'b', 'c'], ['wide_text', False, 'slightly longer text'], ['text', 2, 'byte_text🏽⚕️✊🏽🤩']]) # Basic test self.assertEqual(tbl.get_column_max_width('a'), 9) # Doesn't break for non-strings self.assertEqual(tbl.get_column_max_width('b'), 5) # Evaluates based on byte length rather than char length self.assertEqual(tbl.get_column_max_width('c'), 33) def test_sort(self): # Test basic sort unsorted_tbl = Table([['a', 'b'], [3, 1], [2, 2], [1, 3]]) sorted_tbl = unsorted_tbl.sort() self.assertEqual(sorted_tbl[0], {'a': 1, 'b': 3}) # Test column sort unsorted_tbl = Table([['a', 'b'], [3, 1], [2, 2], [1, 3]]) sorted_tbl = unsorted_tbl.sort('b') self.assertEqual(sorted_tbl[0], {'a': 3, 'b': 1}) # Test reverse sort unsorted_tbl = Table([['a', 'b'], [3, 1], [2, 2], [1, 3]]) sorted_tbl = unsorted_tbl.sort(reverse=True) self.assertEqual(sorted_tbl[0], {'a': 3, 'b': 1}) def test_set_header(self): # Rename columns tbl = Table([['one', 'two'], [1, 2], [3, 4]]) new_tbl = tbl.set_header(['oneone', 'twotwo']) self.assertEqual(new_tbl[0], {'oneone': 1, 'twotwo': 2}) # Change number of columns tbl = Table([['one', 'two'], [1, 2], [3, 4]]) new_tbl = tbl.set_header(['one']) self.assertEqual(new_tbl[0], {'one': 1}) def test_bool(self): empty = Table() not_empty = Table([{'one': 1, 'two': 2}]) self.assertEqual(not empty, True) self.assertEqual(not not_empty, False) def test_use_petl(self): # confirm that this method doesn't exist for parsons.Table self.assertRaises(AttributeError, getattr, Table, 'skipcomments') tbl = Table([['col1', 'col2'], [ '# this is a comment row', ], ['a', 1], ['#this is another comment', 'this is also ignored'], ['b', 2]]) tbl_expected = Table([['col1', 'col2'], ['a', 1], ['b', 2]]) tbl_after = tbl.use_petl('skipcomments', '#') assert_matching_tables(tbl_expected, tbl_after) tbl.use_petl('skipcomments', '#', update_table=True) assert_matching_tables(tbl_expected, tbl) from petl.util.base import Table as PetlTable tbl_petl = tbl.use_petl('skipcomments', '#', to_petl=True) self.assertIsInstance(tbl_petl, PetlTable)