def run_timestep_experiment_low_gamma_high_particles(): timesteps = np.logspace(start=0, stop=-4, num=15) test_params = { "particle_count": 20 * [501], "gamma": [0.01], "G": ["Smooth"], "scaling": ["Local"], "D": [0.25], "phi": ["Gamma"], "initial_dist_x": ["two_clusters_2N_N"], "initial_dist_v": ["2N_N_cluster_const"], "T_end": [200.0], "dt": timesteps.tolist(), "option": ["numba"], } os.chdir("E:/") history = processing.get_master_yaml(yaml_path="timestep_experiments") fn = "LowGammaLoweringTimestepHighParticles" processing.run_experiment(test_params, history, experiment_name=fn) print( "Running reduced timestep with gamma =0.01 and N=500 --- does non-uniformity persist?" )
def run_timestep_experiment_phi_uniform(): timesteps = np.logspace(start=0, stop=-4, num=15) test_params = { "particle_count": 10 * [99, 501], # (3 * np.arange(8, 150, 16)).tolist(), "G": ["Smooth"], "scaling": ["Local"], "D": [0.25], "phi": ["Uniform"], "initial_dist_x": ["two_clusters_2N_N"], "initial_dist_v": ["2N_N_cluster_const"], "T_end": [200.0], "dt": timesteps.tolist(), "option": ["numba"], } os.chdir("E:/") history = processing.get_master_yaml(yaml_path="timestep_experiments") fn = "UniformInteractionLoweringTimestep" processing.run_experiment(test_params, history, experiment_name=fn) print( "Running reduced timestep with phi=1 --- post-process to check against gamma =0.5" )
import particle.processing as processing particles = 100 test_params = { "particle_count": 100 * [particles], # (3 * np.arange(8, 150, 16)).tolist(), # "gamma": (np.arange(0.2, 0.5, 0.05)).tolist(), "G": ["Smooth"], "scaling": ["Local"], "D": [1.0], "phi": ["Gamma"], "gamma": [0.1], "initial_dist_x": ["uniform_dn"], "initial_dist_v": ["pos_normal_dn"], "T_end": [2000.0], "dt": [0.01], "option": ["numba"], } history = processing.get_master_yaml(yaml_path="experiments_ran") # fn = ( # f"""{test_params["initial_dist_v"][0]}_""" # f"""vel_{test_params["scaling"][0]}_G{test_params["G"][0]}_""" # f"""T{int(test_params["T_end"][0])}_noise_report_Galpha""" # ) fn = f"""PSMean0""" processing.run_experiment(test_params, history, experiment_name=fn)
# sim_parameters = { # "particle_count": [2000], # "D": [0.25], # "G": ["Garnier"], # "alpha": [8], # "scaling": ["Global"], # "phi": ["Normalised Gamma"], # "gamma": [0.1], # "initial_dist_x": ["one_cluster"], # "initial_dist_v": ["pos_normal_dn"], # "T_end": [200.0], # "dt": [0.005], # "option": ["numba"], # "record_time": [0.25], # } # history = processing.get_master_yaml(yaml_path="experiments_ran") # fn = ( # f"""{test_params["initial_dist_v"][0]}_""" # f"""vel_{test_params["scaling"][0]}_G{test_params["G"][0]}_""" # f"""T{int(test_params["T_end"][0])}_noise_report_Galpha""" # ) os.chdir("D:/InteractingParticleSystems/noisysystem_temp") # os.chdir("/exports/eddie/scratch/s1415551") fn = "OneClusterVaryNormalisedGammaLocalHigherNoise" processing.run_experiment(sim_parameters, experiment_name=fn) print( "Ran for Local Scaling", sim_parameters, )