コード例 #1
0
def a_priori_shape(t):
    transformation = Atanh()
    transformation.z_max = 1.2
    transformation.z_min = 0.0
    x = np.maximum(np.minimum(0.7 - (270 - t) / 100.0, 0.7), 0.2)
    x = 0.5 * np.ones(t.shape)
    return transformation(x)
コード例 #2
0
ファイル: __init__.py プロジェクト: erikssonpatrick/mcrf
 def __init__(self, covariance, mask=None, mask_value=1e-12):
     super().__init__("H2O", covariance)
     self.mask = mask
     self.mask_value = mask_value
     self.transformation = Atanh()
     self.transformation.z_max = 1.1
     self.transformation.z_min = 0.0
コード例 #3
0
ファイル: retrieval.py プロジェクト: erikssonpatrick/mcrf
    def _setup_retrieval(self):
        """
        Setup the parts simulation used to perform the retrieval.
        """

        for q in self.hydrometeors:

            limit_low_1, limit_low_2 = q.limits_low
            if hasattr(q, "limits_high"):
                limit_high_1, limit_high_2 = q.limits_high
            else:
                limit_high_1, limit_high_2 = np.inf, np.inf

            md = q.moments[0]
            self.simulation.retrieval.add(md)
            md.transformation = q.transformations[0]
            md.retrieval.limit_low = q.limits_low[0]
            md.retrieval.limit_high = limit_high_1

            n0 = q.moments[1]
            self.simulation.retrieval.add(n0)
            n0.transformation = q.transformations[1]
            n0.retrieval.limit_low = q.limits_low[1]
            n0.retrieval.limit_high = limit_high_2

        h2o = self.simulation.atmosphere.absorbers[-1]

        h2o_a = [p for p in self.data_provider.subproviders \
                 if getattr(p, "name", "") == "H2O"]
        if len(h2o_a) > 0:
            h2o_a = h2o_a[0]
            self.simulation.retrieval.add(h2o)
            atanh = Atanh(0.0, 1.1)
            h2o.transformation = h2o_a.transformation
            h2o.retrieval.unit = RelativeHumidity()
            self.h2o = h2o
        else:
            self.h2o = None

        if self.include_cloud_water:
            cw_a = [p for p in self.data_provider.subproviders \
                    if getattr(p, "name", "") == "cloud_water"][0]
            cw = self.simulation.atmosphere.absorbers[-2]
            self.simulation.retrieval.add(cw)
            pl = PiecewiseLinear(cw_a)
            cw.transformation = Composition(Log10(), pl)
            cw.retrieval.limit_high = -3
            self.cw = cw
        else:
            self.cw = None

        t_a = [p for p in self.data_provider.subproviders \
                 if getattr(p, "name", "") == "temperature"]
        if len(t_a) > 0:
            t = self.simulation.atmosphere.temperature
            self.temperature = t
            self.simulation.retrieval.add(self.temperature)
        else:
            self.temperature = None
コード例 #4
0
def a_priori_shape(t):
    transformation = Atanh()
    transformation.z_max = upper_limit
    transformation.z_min = lower_limit
    x = np.maximum(np.minimum(0.8 - (270 - t) / 100.0, 0.7), 0.1)
    return transformation(x)
コード例 #5
0
rh_mask = AltitudeMask(-1, 20e3)
rh_covariance = Diagonal(1.0, mask=rh_mask)
rh_covariance = SpatialCorrelation(rh_covariance, 2e3, mask=rh_mask)
rh_a_priori = FunctionalAPriori("H2O",
                                "temperature",
                                a_priori_shape,
                                rh_covariance,
                                mask=rh_mask,
                                mask_value=-100)
rh_a_priori = MaskedRegularGrid(rh_a_priori,
                                21,
                                rh_mask,
                                quantity="altitude",
                                provide_retrieval_grid=False)
rh_a_priori.unit = "rh"
rh_a_priori.transformation = Composition(Atanh(lower_limit, upper_limit),
                                         PiecewiseLinear(rh_a_priori))

################################################################################
# Observation error
################################################################################


class ObservationError(DataProviderBase):
    """
    Observation error covariance matrix provider for the LIRAS study.

    This class works in the same way as the :class:`SensorNoiseAPriori` class
    parts, which means that it takes the :code:`nedt` attributes of the given
    sensors and concatenates these vectors into a combined diagonal matrix.
コード例 #6
0
ファイル: __init__.py プロジェクト: erikssonpatrick/mcrf
rh_mask = AltitudeMask(-1, 20e3)
rh_covariance = Diagonal(0.5, mask=rh_mask)
rh_covariance = SpatialCorrelation(rh_covariance, 2e3)
rh_a_priori = FunctionalAPriori("H2O",
                                "temperature",
                                a_priori_shape,
                                rh_covariance,
                                mask=rh_mask,
                                mask_value=-100)
rh_a_priori = MaskedRegularGrid(rh_a_priori,
                                21,
                                rh_mask,
                                quantity="altitude",
                                provide_retrieval_grid=False)
rh_a_priori.unit = "rh"
rh_a_priori.transformation = Composition(Atanh(0.0, 1.1),
                                         PiecewiseLinear(rh_a_priori))

################################################################################
# Observation error
################################################################################


class ObservationError(DataProviderBase):
    """
    Observation error covariance matrix provider for the LIRAS study.

    This class works in the same way as the :class:`SensorNoiseAPriori` class
    parts, which means that it takes the :code:`nedt` attributes of the given
    sensors and concatenates these vectors into a combined diagonal matrix.
コード例 #7
0
cloud_water_a_priori = FixedAPriori("cloud_water", -6, liquid_covariance,
                                    mask = liquid_mask, mask_value = -20)
cloud_water_a_priori = ReferenceAPriori("cloud_water", liquid_covariance,
                                        mask = liquid_mask, mask_value = -20,
                                        a_priori = cloud_water_a_priori,
                                        transformation = Log10())
cloud_water_a_priori = MaskedRegularGrid(cloud_water_a_priori, 7, liquid_mask,
                                         "altitude", provide_retrieval_grid = False)

################################################################################
# Humidity
################################################################################

def a_priori_shape(t):
    transformation = Atanh()
    transformation.z_max = 1.2
    transformation.z_min = 0.0
    x = np.maximum(np.minimum(0.7 - (270 - t) / 100.0, 0.7), 0.2)
    x = 0.5 * np.ones(t.shape)
    return transformation(x)

z_grid = np.linspace(0, 20e3, 21)
rh_covariance = Diagonal(1.0)
rh_covariance = SpatialCorrelation(rh_covariance, 2e3)
rh_a_priori = FunctionalAPriori("H2O", "temperature", a_priori_shape, rh_covariance)
rh_a_priori = ReferenceAPriori("H2O", rh_covariance, transformation = Atanh(0.0, 1.2),
                               a_priori = rh_a_priori,
                               variable = "relative_humidity")
rh_a_priori = ReducedVerticalGrid(rh_a_priori, z_grid, "altitude",
                                  provide_retrieval_grid = False)
コード例 #8
0
ファイル: __init__.py プロジェクト: erikssonpatrick/mcrf
def a_priori_shape(t):
    transformation = Atanh()
    transformation.z_max = 1.1
    transformation.z_min = 0.0
    x = np.maximum(np.minimum(0.5 - (270 - t) / 100.0, 0.5), 0.1)
    return transformation(x)