コード例 #1
0
def extract_stats(opts):
    dset = build_dataset_providers(opts)
    collater_keys = dset[-1]
    dset = dset[0]
    collater = DictCollater()
    collater.batching_keys.extend(collater_keys)
    dloader = DataLoader(dset,
                         batch_size=100,
                         shuffle=True,
                         collate_fn=collater,
                         num_workers=opts.num_workers)
    # Compute estimation of bpe. As we sample chunks randomly, we
    # should say that an epoch happened after seeing at least as many
    # chunks as total_train_wav_dur // chunk_size
    bpe = (dset.total_wav_dur // opts.chunk_size) // 500
    data = {}
    # run one epoch of training data to extract z-stats of minions
    for bidx, batch in enumerate(dloader, start=1):
        print('Bidx: {}/{}'.format(bidx, bpe))
        for k, v in batch.items():
            if k in opts.exclude_keys:
                continue
            if k not in data:
                data[k] = []
            data[k].append(v)

        if bidx >= opts.max_batches:
            break

    stats = {}
    data = dict((k, torch.cat(v)) for k, v in data.items())
    for k, v in data.items():
        stats[k] = {
            'mean': torch.mean(torch.mean(v, dim=2), dim=0),
            'std': torch.std(torch.std(v, dim=2), dim=0)
        }
    with open(opts.out_file, 'wb') as stats_f:
        pickle.dump(stats, stats_f)
コード例 #2
0
def extract_stats(opts):
    trans = Compose([
        ToTensor(),
        MIChunkWav(opts.chunk_size),
        LPS(hop=opts.hop_size),
        MFCC(hop=opts.hop_size),
        Prosody(hop=opts.hop_size)
    ])
    dset = PairWavDataset(opts.data_root, opts.data_cfg, 'train',
                         transform=trans)
    dloader = DataLoader(dset, batch_size = 100,
                         shuffle=True, collate_fn=DictCollater(),
                         num_workers=opts.num_workers)
    # Compute estimation of bpe. As we sample chunks randomly, we
    # should say that an epoch happened after seeing at least as many
    # chunks as total_train_wav_dur // chunk_size
    bpe = (dset.total_wav_dur // opts.chunk_size) // 500
    data = {}
    # run one epoch of training data to extract z-stats of minions
    for bidx, batch in enumerate(dloader, start=1):
        print('Bidx: {}/{}'.format(bidx, bpe))
        for k, v in batch.items():
            if k not in data:
                data[k] = []
            data[k].append(v)

        if bidx >= opts.max_batches:
            break

    stats = {}
    data = dict((k, torch.cat(v)) for k, v in data.items())
    for k, v in data.items():
        stats[k] = {'mean':torch.mean(torch.mean(v, dim=2), dim=0),
                    'std':torch.std(torch.std(v, dim=2), dim=0)}
    with open(opts.out_file, 'wb') as stats_f:
        pickle.dump(stats, stats_f)
コード例 #3
0
def train(opts):
    CUDA = True if torch.cuda.is_available() and not opts.no_cuda else False
    device = 'cuda' if CUDA else 'cpu'
    num_devices = 1
    np.random.seed(opts.seed)
    random.seed(opts.seed)
    torch.manual_seed(opts.seed)
    if CUDA:
        torch.cuda.manual_seed_all(opts.seed)
        num_devices = torch.cuda.device_count()
        print('[*] Using CUDA {} devices'.format(num_devices))
    else:
        print('[!] Using CPU')
    print('Seeds initialized to {}'.format(opts.seed))

    #torch.autograd.set_detect_anomaly(True)

    # --------------------- 
    # Build Model

    minions_cfg = worker_parser(opts.net_cfg)
    #make_transforms(opts, minions_cfg)
    opts.random_scale = str2bool(opts.random_scale)

    dsets, collater_keys = build_dataset_providers(opts, minions_cfg)
    dset, va_dset = dsets
    # Build collater, appending the keys from the loaded transforms to the
    # existing default ones
    collater = DictCollater()
    collater.batching_keys.extend(collater_keys)
    dloader = DataLoader(dset, batch_size=opts.batch_size,
                         shuffle=True, collate_fn=collater,
                         num_workers=opts.num_workers,drop_last=True,
                         pin_memory=CUDA)
    # Compute estimation of bpe. As we sample chunks randomly, we
    # should say that an epoch happened after seeing at least as many
    # chunks as total_train_wav_dur // chunk_size
    bpe = (dset.total_wav_dur // opts.chunk_size) // opts.batch_size
    print ("Dataset has a total {} hours of training data".format(dset.total_wav_dur/16000/3600.0))
    opts.bpe = bpe
    if opts.do_eval:
        assert va_dset is not None, (
            "Asked to do validation, but failed to build validation set"
        )
        va_dloader = DataLoader(va_dset, batch_size=opts.batch_size,
                                shuffle=True, collate_fn=DictCollater(),
                                num_workers=opts.num_workers,drop_last=True,
                                pin_memory=CUDA)
        va_bpe = (va_dset.total_wav_dur // opts.chunk_size) // opts.batch_size
        opts.va_bpe = va_bpe
    else:
        va_dloader = None
    # fastet lr to MI
    #opts.min_lrs = {'mi':0.001}

    if opts.fe_cfg is not None:
        with open(opts.fe_cfg, 'r') as fe_cfg_f:
            print(fe_cfg_f)
            fe_cfg = json.load(fe_cfg_f)
            print(fe_cfg)
    else:
        fe_cfg = None

    # load config file for attention blocks
    if opts.att_cfg:
        with open(opts.att_cfg) as f:
            att_cfg = json.load(f)
            print(att_cfg)
    else:
        att_cfg = None

    print(str2bool(opts.tensorboard))
    Trainer = trainer(frontend_cfg=fe_cfg,
                      att_cfg=att_cfg,
                      minions_cfg=minions_cfg,
                      cfg=vars(opts),
                      backprop_mode=opts.backprop_mode,
                      lr_mode=opts.lr_mode,
                      tensorboard=str2bool(opts.tensorboard),
                      device=device)
    print(Trainer.model)
    print('Frontend params: ', Trainer.model.frontend.describe_params())

    Trainer.model.to(device)

    Trainer.train_(dloader, device=device, valid_dataloader=va_dloader)
コード例 #4
0
def train(opts):
    CUDA = True if torch.cuda.is_available() and not opts.no_cuda else False
    device = 'cuda' if CUDA else 'cpu'
    num_devices = 1
    np.random.seed(opts.seed)
    random.seed(opts.seed)
    torch.manual_seed(opts.seed)
    if CUDA:
        torch.cuda.manual_seed_all(opts.seed)
        num_devices = torch.cuda.device_count()
        print('[*] Using CUDA {} devices'.format(num_devices))
    else:
        print('[!] Using CPU')
    print('Seeds initialized to {}'.format(opts.seed))

    # ---------------------
    # Build Model
    if opts.fe_cfg is not None:
        with open(opts.fe_cfg, 'r') as fe_cfg_f:
            fe_cfg = json.load(fe_cfg_f)
            print(fe_cfg)
    else:
        fe_cfg = None
    minions_cfg = pase_parser(opts.net_cfg)
    make_transforms(opts, minions_cfg)
    model = Waveminionet(minions_cfg=minions_cfg,
                         adv_loss=opts.adv_loss,
                         num_devices=num_devices,
                         pretrained_ckpt=opts.pretrained_ckpt,
                         frontend_cfg=fe_cfg)

    print(model)
    if opts.net_ckpt is not None:
        model.load_pretrained(opts.net_ckpt, load_last=True, verbose=True)
    print('Frontend params: ', model.frontend.describe_params())
    model.to(device)
    trans = make_transforms(opts, minions_cfg)
    print(trans)
    # Build Dataset(s) and DataLoader(s)
    dset = PairWavDataset(opts.data_root,
                          opts.data_cfg,
                          'train',
                          transform=trans,
                          preload_wav=opts.preload_wav)
    dloader = DataLoader(dset,
                         batch_size=opts.batch_size,
                         shuffle=True,
                         collate_fn=DictCollater(),
                         num_workers=opts.num_workers,
                         pin_memory=CUDA)
    # Compute estimation of bpe. As we sample chunks randomly, we
    # should say that an epoch happened after seeing at least as many
    # chunks as total_train_wav_dur // chunk_size
    bpe = (dset.total_wav_dur // opts.chunk_size) // opts.batch_size
    opts.bpe = bpe
    if opts.do_eval:
        va_dset = PairWavDataset(opts.data_root,
                                 opts.data_cfg,
                                 'valid',
                                 transform=trans,
                                 preload_wav=opts.preload_wav)
        va_dloader = DataLoader(va_dset,
                                batch_size=opts.batch_size,
                                shuffle=False,
                                collate_fn=DictCollater(),
                                num_workers=opts.num_workers,
                                pin_memory=CUDA)
        va_bpe = (va_dset.total_wav_dur // opts.chunk_size) // opts.batch_size
        opts.va_bpe = va_bpe
    else:
        va_dloader = None
    # fastet lr to MI
    #opts.min_lrs = {'mi':0.001}
    model.train_(dloader, vars(opts), device=device, va_dloader=va_dloader)
コード例 #5
0
ファイル: train.py プロジェクト: pswietojanski/pase
def train(opts):
    CUDA = True if torch.cuda.is_available() and not opts.no_cuda else False
    device = 'cuda' if CUDA else 'cpu'
    num_devices = 1
    np.random.seed(opts.seed)
    random.seed(opts.seed)
    torch.manual_seed(opts.seed)
    if CUDA:
        torch.cuda.manual_seed_all(opts.seed)
        num_devices = torch.cuda.device_count()
        print('[*] Using CUDA {} devices'.format(num_devices))
    else:
        print('[!] Using CPU')
    print('Seeds initialized to {}'.format(opts.seed))

    # ---------------------
    # Build Model
    frontend = wf_builder(opts.fe_cfg)
    minions_cfg = pase_parser(opts.net_cfg,
                              batch_acum=opts.batch_acum,
                              device=device,
                              frontend=frontend)
    model = Waveminionet(minions_cfg=minions_cfg,
                         adv_loss=opts.adv_loss,
                         num_devices=num_devices,
                         frontend=frontend)

    print(model)
    print('Frontend params: ', model.frontend.describe_params())
    model.to(device)
    trans = make_transforms(opts, minions_cfg)
    print(trans)
    if opts.dtrans_cfg is not None:
        with open(opts.dtrans_cfg, 'r') as dtr_cfg:
            dtr = json.load(dtr_cfg)
            #dtr['trans_p'] = opts.distortion_p
            dist_trans = config_distortions(**dtr)
            print(dist_trans)
    else:
        dist_trans = None
    # Build Dataset(s) and DataLoader(s)
    dataset = getattr(pase.dataset, opts.dataset)
    dset = dataset(opts.data_root,
                   opts.data_cfg,
                   'train',
                   transform=trans,
                   noise_folder=opts.noise_folder,
                   whisper_folder=opts.whisper_folder,
                   distortion_probability=opts.distortion_p,
                   distortion_transforms=dist_trans,
                   preload_wav=opts.preload_wav)
    dloader = DataLoader(dset,
                         batch_size=opts.batch_size,
                         shuffle=True,
                         collate_fn=DictCollater(),
                         num_workers=opts.num_workers,
                         pin_memory=CUDA)
    # Compute estimation of bpe. As we sample chunks randomly, we
    # should say that an epoch happened after seeing at least as many
    # chunks as total_train_wav_dur // chunk_size
    bpe = (dset.total_wav_dur // opts.chunk_size) // opts.batch_size
    opts.bpe = bpe
    if opts.do_eval:
        va_dset = dataset(opts.data_root,
                          opts.data_cfg,
                          'valid',
                          transform=trans,
                          noise_folder=opts.noise_folder,
                          whisper_folder=opts.whisper_folder,
                          distortion_probability=opts.distortion_p,
                          distortion_transforms=dist_trans,
                          preload_wav=opts.preload_wav)
        va_dloader = DataLoader(va_dset,
                                batch_size=opts.batch_size,
                                shuffle=False,
                                collate_fn=DictCollater(),
                                num_workers=opts.num_workers,
                                pin_memory=CUDA)
        va_bpe = (va_dset.total_wav_dur // opts.chunk_size) // opts.batch_size
        opts.va_bpe = va_bpe
    else:
        va_dloader = None
    # fastet lr to MI
    #opts.min_lrs = {'mi':0.001}
    model.train_(dloader, vars(opts), device=device, va_dloader=va_dloader)
コード例 #6
0
def eval(opts):
    CUDA = True if torch.cuda.is_available() and not opts.no_cuda else False
    device = 'cuda' if CUDA else 'cpu'
    np.random.seed(opts.seed)
    random.seed(opts.seed)
    torch.manual_seed(opts.seed)
    if CUDA:
        torch.cuda.manual_seed_all(opts.seed)
    print('Seeds initialized to {}'.format(opts.seed))
    # ---------------------
    # Transforms
    trans = Compose([
        ToTensor(),
        MIChunkWav(opts.chunk_size, random_scale=opts.random_scale),
        LPS(opts.nfft, hop=opts.stride, win=400),
        MFCC(hop=opts.stride),
        Prosody(hop=opts.stride, win=400),
        ZNorm(opts.stats)
    ])
    print(trans)

    # ---------------------
    # Build Dataset(s) and DataLoader(s)
    dset = PairWavDataset(opts.data_root,
                          opts.data_cfg,
                          'valid',
                          transform=trans)
    dloader = DataLoader(dset,
                         batch_size=opts.batch_size,
                         shuffle=False,
                         collate_fn=DictCollater(),
                         num_workers=opts.num_workers)
    # Compute estimation of bpe. As we sample chunks randomly, we
    # should say that an epoch happened after seeing at least as many
    # chunks as total_train_wav_dur // chunk_size
    bpe = (dset.total_wav_dur // opts.chunk_size) // opts.batch_size

    # ---------------------
    # Build Model
    if opts.fe_cfg is not None:
        with open(opts.fe_cfg, 'r') as fe_cfg_f:
            fe_cfg = json.load(fe_cfg_f)
            print(fe_cfg)
    else:
        fe_cfg = None
    model = Waveminionet(minions_cfg=pase_parser(opts.net_cfg),
                         adv_loss=opts.adv_loss,
                         pretrained_ckpt=opts.pretrained_ckpt,
                         frontend_cfg=fe_cfg)

    print(model)
    model.to(device)
    writer = SummaryWriter(opts.save_path)
    if opts.max_epoch is not None:
        # just make a sequential search til max epoch ckpts
        ckpts = ['fullmodel_e{}.ckpt'.format(e) for e in range(opts.max_epoch)]
    else:
        ckpts = opts.ckpts
    for model_ckpt in ckpts:
        # name format is fullmodel_e{}.ckpt
        epoch = int(model_ckpt.split('_')[-1].split('.')[0][1:])
        model_ckpt = os.path.join(opts.ckpt_root, model_ckpt)
        print('Loading ckpt ', model_ckpt)
        model.load_pretrained(model_ckpt, load_last=True, verbose=False)
        model.eval_(dloader,
                    opts.batch_size,
                    bpe,
                    log_freq=opts.log_freq,
                    epoch_idx=epoch,
                    writer=writer,
                    device=device)
コード例 #7
0
def eval(opts):
    CUDA = True if torch.cuda.is_available() and not opts.no_cuda else False
    device = 'cuda' if CUDA else 'cpu'
    np.random.seed(opts.seed)
    random.seed(opts.seed)
    torch.manual_seed(opts.seed)
    if CUDA:
        torch.cuda.manual_seed_all(opts.seed)
    print('Seeds initialized to {}'.format(opts.seed))
    # ---------------------
    # Transforms
    trans = Compose([
        ToTensor(),
        MIChunkWav(opts.chunk_size, random_scale=opts.random_scale),
        Prosody(hop=opts.stride, win=400)
    ])

    with open(opts.stats, 'rb') as stats_f:
        stats = pickle.load(stats_f)

    # ---------------------
    # Build Dataset(s) and DataLoader(s)
    dset = PairWavDataset(opts.data_root,
                          opts.data_cfg,
                          'test',
                          transform=trans)
    dloader = DataLoader(dset,
                         batch_size=opts.batch_size,
                         shuffle=False,
                         collate_fn=DictCollater(),
                         num_workers=opts.num_workers)
    # Compute estimation of bpe. As we sample chunks randomly, we
    # should say that an epoch happened after seeing at least as many
    # chunks as total_train_wav_dur // chunk_size
    bpe = (dset.total_wav_dur // opts.chunk_size) // opts.batch_size

    # ---------------------
    # Build Model
    if opts.fe_cfg is not None:
        with open(opts.fe_cfg, 'r') as fe_cfg_f:
            fe_cfg = json.load(fe_cfg_f)
            print(fe_cfg)
    else:
        fe_cfg = None
    model = Waveminionet(minions_cfg=pase_parser(opts.net_cfg),
                         frontend_cfg=fe_cfg)

    print(model)
    model.to(device)

    ckpts = opts.ckpts
    use_epid = False
    if opts.ckpt_epochs is not None:
        use_epid = True
        ckpts = opts.ckpt_epochs
    if ckpts is None:
        raise ValueError('Please specify either ckpts or ckpt_epochs')

    if opts.ckpt_root is None:
        raise ValueError('Please specify ckpt_root!')

    ckpts_res = []

    for ckpt in ckpts:
        if use_epid:
            ckpt_name = 'fullmodel_e{}.ckpt'.format(ckpt)
        else:
            ckpt_name = ckpt
        ckpt_path = os.path.join(opts.ckpt_root, ckpt_name)
        print('Loading ckpt: ', ckpt_path)
        model.load_pretrained(ckpt_path, load_last=True, verbose=True)

        # select prosodic minion
        pmodel = None
        for minion in model.minions:
            if 'prosody' in minion.name:
                pmodel = minion

        # select frontend
        fe = model.frontend

        ckpts_res.append(
            forward_dloader(dloader, bpe, fe, pmodel, stats, opts.tags,
                            device))
        print('Results for ckpt {}'.format(ckpt_name))
        print('-' * 25)
        for k, v in ckpts_res[-1].items():
            print('{}: {}'.format(k, np.mean(v)))
        print('=' * 25)

    with open(opts.out_file, 'w') as out_f:
        out_f.write(json.dumps(ckpts_res, indent=2))
コード例 #8
0
ファイル: train.py プロジェクト: EdwardDixon/pase
def train(opts):
    CUDA = True if torch.cuda.is_available() and not opts.no_cuda else False
    device = 'cuda' if CUDA else 'cpu'
    num_devices = 1
    np.random.seed(opts.seed)
    random.seed(opts.seed)
    torch.manual_seed(opts.seed)
    if CUDA:
        torch.cuda.manual_seed_all(opts.seed)
        num_devices = torch.cuda.device_count()
        print('[*] Using CUDA {} devices'.format(num_devices))
    else:
        print('[!] Using CPU')
    print('Seeds initialized to {}'.format(opts.seed))

    #torch.autograd.set_detect_anomaly(True)

    # ---------------------
    # Build Model

    minions_cfg = worker_parser(opts.net_cfg)
    #make_transforms(opts, minions_cfg)
    opts.random_scale = str2bool(opts.random_scale)

    dsets, collater_keys = build_dataset_providers(opts, minions_cfg)
    dset, va_dset = dsets
    # Build collater, appending the keys from the loaded transforms to the
    # existing default ones
    collater = DictCollater()
    collater.batching_keys.extend(collater_keys)
    dloader = DataLoader(dset,
                         batch_size=opts.batch_size,
                         shuffle=True,
                         collate_fn=collater,
                         num_workers=opts.num_workers,
                         drop_last=True,
                         pin_memory=CUDA)
    # Compute estimation of bpe. As we sample chunks randomly, we
    # should say that an epoch happened after seeing at least as many
    # chunks as total_train_wav_dur // chunk_size
    bpe = (dset.total_wav_dur // opts.chunk_size) // opts.batch_size
    print("Dataset has a total {} hours of training data".format(
        dset.total_wav_dur / 16000 / 3600.0))
    opts.bpe = bpe
    if opts.do_eval:
        assert va_dset is not None, (
            "Asked to do validation, but failed to build validation set")
        va_dloader = DataLoader(va_dset,
                                batch_size=opts.batch_size,
                                shuffle=True,
                                collate_fn=DictCollater(),
                                num_workers=opts.num_workers,
                                drop_last=True,
                                pin_memory=CUDA)
        va_bpe = (va_dset.total_wav_dur // opts.chunk_size) // opts.batch_size
        opts.va_bpe = va_bpe
    else:
        va_dloader = None
    # fastet lr to MI
    #opts.min_lrs = {'mi':0.001}

    if opts.fe_cfg is not None:
        with open(opts.fe_cfg, 'r') as fe_cfg_f:
            print(fe_cfg_f)
            fe_cfg = json.load(fe_cfg_f)
            print(fe_cfg)
    else:
        fe_cfg = None

    # load config file for attention blocks
    if opts.att_cfg:
        with open(opts.att_cfg) as f:
            att_cfg = json.load(f)
            print(att_cfg)
    else:
        att_cfg = None

    print(str2bool(opts.tensorboard))
    Trainer = trainer(frontend_cfg=fe_cfg,
                      att_cfg=att_cfg,
                      minions_cfg=minions_cfg,
                      cfg=vars(opts),
                      backprop_mode=opts.backprop_mode,
                      lr_mode=opts.lr_mode,
                      tensorboard=str2bool(opts.tensorboard),
                      device=device)

    model_description = str(Trainer.model)
    tfh = tempfile.NamedTemporaryFile(mode="w")
    tfh.write(model_description)
    tfh.flush()

    print(model_description)
    num_params = Trainer.model.frontend.describe_params()
    print(f'Frontend params: {num_params}')

    # Prepare logging
    neptune_settings = None
    npt_exp = None
    if opts.neptune is not None:
        with open(opts.neptune, "r") as fh:
            neptune_settings = json.load(fh)
            fh.close()

        neptune.init(neptune_settings["project_name"],
                     api_token=neptune_settings["api_key"])
        npt_exp = neptune.create_experiment(params=vars(opts),
                                            name=opts.experimentname,
                                            tags=opts.tags)
    else:
        # running offline
        neptune.init(backend=neptune.OfflineBackend(),
                     project_qualified_name="offline/PASE+")

    neptune.log_artifact(tfh.name, "model_description.txt")
    tfh.close()
    neptune.set_property("frontend_params", num_params)

    Trainer.model.to(device)

    Trainer.train_(dloader, device=device, valid_dataloader=va_dloader)
コード例 #9
0
def cluster(opts):
    CUDA = True if torch.cuda.is_available() else False
    device = 'cuda' if CUDA else 'cpu'
    num_devices = 1
    np.random.seed(opts.seed)
    random.seed(opts.seed)
    torch.manual_seed(opts.seed)
    if CUDA:
        torch.cuda.manual_seed_all(opts.seed)
        num_devices = torch.cuda.device_count()
        print('[*] Using CUDA {} devices'.format(num_devices))
    else:
        print('[!] Using CPU')
    fe = wf_builder(opts.fe_cfg)
    if opts.fe_ckpt is not None:
        fe.load_pretrained(opts.fe_ckpt, load_last=True, verbose=True)
    else:
        print('WARNING: No pretrained ckpt loaded for FE! Random clustering?')
    fe.to(device)
    fe.eval()
    trans = Compose(
        [ToTensor(),
         SingleChunkWav(opts.chunk_size, random_scale=False)])
    # Build Dataset(s) and DataLoader(s)
    dset = PairWavDataset(opts.data_root,
                          opts.data_cfg,
                          'train',
                          transform=trans)
    dloader = DataLoader(dset,
                         batch_size=opts.batch_size,
                         shuffle=True,
                         collate_fn=DictCollater(),
                         num_workers=opts.num_workers)
    # acumulate train chunks and do clustering on them,
    # with each chunk containing several frames
    X = []
    timings = []
    N = opts.num_samples // opts.batch_size
    beg_t = timeit.default_timer()
    for bidx in range(1, N + 1, 1):
        batch = next(dloader.__iter__())
        chunk = batch['chunk']
        y = fe(chunk.to(device)).mean(dim=2)
        X.append(y.view(-1, y.size(-1)).cpu().data.numpy())
        end_t = timeit.default_timer()
        timings.append(end_t - beg_t)
        beg_t = timeit.default_timer()
        if bidx % opts.log_freq == 0 or bidx >= N:
            print('Forwarded batch {:4d}/{:4d}, btime: {:.2f} s, '
                  'mbtime: {:.2f} s'.format(bidx, N, timings[-1],
                                            np.mean(timings)),
                  end='\r')
    print()
    X = np.concatenate(X, axis=0)
    print('Total X shape: ', X.shape)
    print('Running KMeans...')
    beg_t = timeit.default_timer()
    kmeans = KMeans(n_clusters=opts.k_clusters, n_jobs=opts.n_jobs,
                    verbose=0).fit(X)
    end_t = timeit.default_timer()
    print('Clusterized in {:.2f} s'.format(end_t - beg_t))
    print('Saving KMeans...')
    with open(os.path.join(opts.save_path, 'kmeans.pkl'), 'wb') as f:
        pickle.dump(kmeans, f)
    print('Finished program')