def ana_matrix_jwst(): # Keep track of time start_time = time.time() # runtime is currently around 11 minutes log.info('Building analytical matrix for JWST\n') # Parameters datadir = os.path.join(CONFIG_PASTIS.get('local', 'local_data_path'), 'active') which_tel = CONFIG_PASTIS.get('telescope', 'name') resDir = os.path.join(datadir, 'matrix_analytical') nb_seg = CONFIG_PASTIS.getint(which_tel, 'nb_subapertures') nm_aber = CONFIG_PASTIS.getfloat(which_tel, 'calibration_aberration') * u.nm zern_number = CONFIG_PASTIS.getint('calibration', 'local_zernike') # Noll convention! zern_mode = util.ZernikeMode( zern_number) # Create Zernike mode object for easier handling # If subfolder "matrix_analytical" doesn't exist yet, create it. if not os.path.isdir(resDir): os.mkdir(resDir) #-# Generating the PASTIS matrix matrix_direct = np.zeros( [nb_seg, nb_seg]) # Generate empty matrix for contrast values from loop. all_ims = [] all_dhs = [] all_contrasts = [] for i in range(nb_seg): for j in range(nb_seg): log.info('STEP: {}-{} / {}-{}'.format(i + 1, j + 1, nb_seg, nb_seg)) # Putting aberration only on segments i and j tempA = np.zeros([nb_seg]) tempA[i] = nm_aber.value tempA[j] = nm_aber.value tempA *= u.nm # making sure this array has the right units # Create PASTIS image and save full image as well as DH image temp_im_am, full_psf = impastis.analytical_model(zern_number, tempA, cali=True) filename_psf = 'psf_' + zern_mode.name + '_' + zern_mode.convention + str( zern_mode.index) + '_segs_' + str(i + 1) + '-' + str(j + 1) util.write_fits(full_psf, os.path.join(resDir, 'psfs', filename_psf + '.fits'), header=None, metadata=None) all_ims.append(full_psf) filename_dh = 'dh_' + zern_mode.name + '_' + zern_mode.convention + str( zern_mode.index) + '_segs_' + str(i + 1) + '-' + str(j + 1) util.write_fits(temp_im_am, os.path.join(resDir, 'darkholes', filename_dh + '.fits'), header=None, metadata=None) all_dhs.append(temp_im_am) contrast = np.mean(temp_im_am[np.where(temp_im_am != 0)]) matrix_direct[i, j] = contrast log.info(f'contrast = {contrast}') all_contrasts.append(contrast) all_ims = np.array(all_ims) all_dhs = np.array(all_dhs) all_contrasts = np.array(all_contrasts) # Filling the off-axis elements matrix_two_N = np.copy( matrix_direct ) # This is just an intermediary copy so that I don't mix things up. matrix_pastis = np.copy( matrix_direct) # This will be the final PASTIS matrix. for i in range(nb_seg): for j in range(nb_seg): if i != j: matrix_off_val = (matrix_two_N[i, j] - matrix_two_N[i, i] - matrix_two_N[j, j]) / 2. matrix_pastis[i, j] = matrix_off_val log.info('Off-axis for i{}-j{}: {}'.format( i + 1, j + 1, matrix_off_val)) # Normalize matrix for the input aberration matrix_pastis /= np.square(nm_aber.value) # Save matrix to file filename = 'PASTISmatrix_' + zern_mode.name + '_' + zern_mode.convention + str( zern_mode.index) util.write_fits(matrix_pastis, os.path.join(resDir, filename + '.fits'), header=None, metadata=None) log.info(f'Matrix saved to: {os.path.join(resDir, filename + ".fits")}') # Save the PSF and DH image *cubes* as well (as opposed to each one individually) util.write_fits(all_ims, os.path.join(resDir, 'psfs', 'psf_cube' + '.fits'), header=None, metadata=None) util.write_fits(all_dhs, os.path.join(resDir, 'darkholes', 'dh_cube' + '.fits'), header=None, metadata=None) np.savetxt(os.path.join(resDir, 'pair-wise_contrasts.txt'), all_contrasts, fmt='%e') # Tell us how long it took to finish. end_time = time.time() log.info( f'Runtime for matrix_building.py: {end_time - start_time}sec = {(end_time - start_time) / 60}min' ) log.info('Data saved to {}'.format(resDir))
def num_matrix_multiprocess(instrument, design=None, savepsfs=True, saveopds=True): """ Generate a numerical/semi-analytical PASTIS matrix. Multiprocessed script to calculate PASTIS matrix. Implementation adapted from hicat.scripts.stroke_minimization.calculate_jacobian :param instrument: str, what instrument (LUVOIR, HiCAT, JWST) to generate the PASTIS matrix for :param design: str, optional, default=None, which means we read from the configfile: what coronagraph design to use - 'small', 'medium' or 'large' :param savepsfs: bool, if True, all PSFs will be saved to disk individually, as fits files. :param saveopds: bool, if True, all pupil surface maps of aberrated segment pairs will be saved to disk as PDF :return: overall_dir: string, experiment directory """ # Keep track of time start_time = time.time() # runtime is currently around 150 minutes ### Parameters # Create directory names tel_suffix = f'{instrument.lower()}' if instrument == 'LUVOIR': if design is None: design = CONFIG_PASTIS.get('LUVOIR', 'coronagraph_design') tel_suffix += f'-{design}' overall_dir = util.create_data_path(CONFIG_PASTIS.get('local', 'local_data_path'), telescope=tel_suffix) os.makedirs(overall_dir, exist_ok=True) resDir = os.path.join(overall_dir, 'matrix_numerical') # Create necessary directories if they don't exist yet os.makedirs(resDir, exist_ok=True) os.makedirs(os.path.join(resDir, 'OTE_images'), exist_ok=True) os.makedirs(os.path.join(resDir, 'psfs'), exist_ok=True) # Set up logger util.setup_pastis_logging(resDir, f'pastis_matrix_{tel_suffix}') log.info(f'Building numerical matrix for {tel_suffix}\n') # Read calibration aberration zern_number = CONFIG_PASTIS.getint('calibration', 'local_zernike') zern_mode = util.ZernikeMode(zern_number) # Create Zernike mode object for easier handling # General telescope parameters nb_seg = CONFIG_PASTIS.getint(instrument, 'nb_subapertures') seglist = util.get_segment_list(instrument) wvln = CONFIG_PASTIS.getfloat(instrument, 'lambda') * 1e-9 # m wfe_aber = CONFIG_PASTIS.getfloat(instrument, 'calibration_aberration') * 1e-9 # m # Record some of the defined parameters log.info(f'Instrument: {tel_suffix}') log.info(f'Wavelength: {wvln} m') log.info(f'Number of segments: {nb_seg}') log.info(f'Segment list: {seglist}') log.info(f'wfe_aber: {wfe_aber} m') log.info(f'Total number of segment pairs in {instrument} pupil: {len(list(util.segment_pairs_all(nb_seg)))}') log.info(f'Non-repeating pairs in {instrument} pupil calculated here: {len(list(util.segment_pairs_non_repeating(nb_seg)))}') # Copy configfile to resulting matrix directory util.copy_config(resDir) # Calculate coronagraph floor, and normalization factor from direct image contrast_floor, norm = calculate_unaberrated_contrast_and_normalization(instrument, design, return_coro_simulator=False, save_coro_floor=True, save_psfs=False, outpath=overall_dir) # Figure out how many processes is optimal and create a Pool. # Assume we're the only one on the machine so we can hog all the resources. # We expect numpy to use multithreaded math via the Intel MKL library, so # we check how many threads MKL will use, and create enough processes so # as to use 100% of the CPU cores. # You might think we should divide number of cores by 2 to get physical cores # to account for hyperthreading, however empirical testing on telserv3 shows that # it is slightly more performant on telserv3 to use all logical cores num_cpu = multiprocessing.cpu_count() # try: # import mkl # num_core_per_process = mkl.get_max_threads() # except ImportError: # # typically this is 4, so use that as default # log.info("Couldn't import MKL; guessing default value of 4 cores per process") # num_core_per_process = 4 num_core_per_process = 1 # NOTE: this was changed by Scott Will in HiCAT and makes more sense, somehow num_processes = int(num_cpu // num_core_per_process) log.info(f"Multiprocess PASTIS matrix for {instrument} will use {num_processes} processes (with {num_core_per_process} threads per process)") # Set up a function with all arguments fixed except for the last one, which is the segment pair tuple if instrument == 'LUVOIR': calculate_matrix_pair = functools.partial(_luvoir_matrix_one_pair, design, norm, wfe_aber, zern_mode, resDir, savepsfs, saveopds) if instrument == 'HiCAT': # Copy used BostonDM maps to matrix folder shutil.copytree(CONFIG_PASTIS.get('HiCAT', 'dm_maps_path'), os.path.join(resDir, 'hicat_boston_dm_commands')) calculate_matrix_pair = functools.partial(_hicat_matrix_one_pair, norm, wfe_aber, resDir, savepsfs, saveopds) if instrument == 'JWST': calculate_matrix_pair = functools.partial(_jwst_matrix_one_pair, norm, wfe_aber, resDir, savepsfs, saveopds) # Iterate over all segment pairs via a multiprocess pool mypool = multiprocessing.Pool(num_processes) t_start = time.time() results = mypool.map(calculate_matrix_pair, util.segment_pairs_non_repeating(nb_seg)) # this util function returns a generator t_stop = time.time() log.info(f"Multiprocess calculation complete in {t_stop-t_start}sec = {(t_stop-t_start)/60}min") # Unscramble results # results is a list of tuples that contain the return from the partial function, in this case: result[i] = (c, (seg1, seg2)) contrast_matrix = np.zeros([nb_seg, nb_seg]) # Generate empty matrix for i in range(len(results)): # Fill according entry in the matrix and subtract baseline contrast contrast_matrix[results[i][1][0], results[i][1][1]] = results[i][0] - contrast_floor mypool.close() # Save all contrasts to disk, WITH subtraction of coronagraph floor hcipy.write_fits(contrast_matrix, os.path.join(resDir, 'pair-wise_contrasts.fits')) plt.figure(figsize=(10, 10)) plt.imshow(contrast_matrix) plt.colorbar() plt.savefig(os.path.join(resDir, 'contrast_matrix.pdf')) # Calculate the PASTIS matrix from the contrast matrix: off-axis elements and normalization matrix_pastis = pastis_from_contrast_matrix(contrast_matrix, seglist, wfe_aber) # Save matrix to file filename_matrix = f'PASTISmatrix_num_{zern_mode.name}_{zern_mode.convention + str(zern_mode.index)}' hcipy.write_fits(matrix_pastis, os.path.join(resDir, filename_matrix + '.fits')) ppl.plot_pastis_matrix(matrix_pastis, wvln*1e9, out_dir=resDir, save=True) # convert wavelength to nm log.info(f'Matrix saved to: {os.path.join(resDir, filename_matrix + ".fits")}') # Tell us how long it took to finish. end_time = time.time() log.info(f'Runtime for matrix_building_numerical.py/multiprocess: {end_time - start_time}sec = {(end_time - start_time)/60}min') log.info(f'Data saved to {resDir}') return overall_dir
def num_matrix_jwst(): """ Generate a numerical PASTIS matrix for a JWST coronagraph. -- Depracated function, the LUVOIR PASTIS matrix is better calculated with num_matrix_multiprocess(), which can do this for your choice of one of the implemented instruments (LUVOIR, HiCAT, JWST). -- All inputs are read from the (local) configfile and saved to the specified output directory. """ import webbpsf from e2e_simulators import webbpsf_imaging as webbim # Set WebbPSF environment variable os.environ['WEBBPSF_PATH'] = CONFIG_PASTIS.get('local', 'webbpsf_data_path') # Keep track of time start_time = time.time() # runtime is currently around 21 minutes log.info('Building numerical matrix for JWST\n') # Parameters overall_dir = util.create_data_path(CONFIG_PASTIS.get('local', 'local_data_path'), telescope='jwst') resDir = os.path.join(overall_dir, 'matrix_numerical') which_tel = CONFIG_PASTIS.get('telescope', 'name') nb_seg = CONFIG_PASTIS.getint(which_tel, 'nb_subapertures') im_size_e2e = CONFIG_PASTIS.getint('numerical', 'im_size_px_webbpsf') inner_wa = CONFIG_PASTIS.getint(which_tel, 'IWA') outer_wa = CONFIG_PASTIS.getint(which_tel, 'OWA') sampling = CONFIG_PASTIS.getfloat(which_tel, 'sampling') fpm = CONFIG_PASTIS.get(which_tel, 'focal_plane_mask') # focal plane mask lyot_stop = CONFIG_PASTIS.get(which_tel, 'pupil_plane_stop') # Lyot stop filter = CONFIG_PASTIS.get(which_tel, 'filter_name') wfe_aber = CONFIG_PASTIS.getfloat(which_tel, 'calibration_aberration') * u.nm wss_segs = webbpsf.constants.SEGNAMES_WSS_ORDER zern_max = CONFIG_PASTIS.getint('zernikes', 'max_zern') zern_number = CONFIG_PASTIS.getint('calibration', 'local_zernike') zern_mode = util.ZernikeMode(zern_number) # Create Zernike mode object for easier handling wss_zern_nb = util.noll_to_wss(zern_number) # Convert from Noll to WSS framework # Create necessary directories if they don't exist yet os.makedirs(overall_dir, exist_ok=True) os.makedirs(resDir, exist_ok=True) os.makedirs(os.path.join(resDir, 'OTE_images'), exist_ok=True) os.makedirs(os.path.join(resDir, 'psfs'), exist_ok=True) os.makedirs(os.path.join(resDir, 'darkholes'), exist_ok=True) # Create the dark hole mask. pup_im = np.zeros([im_size_e2e, im_size_e2e]) # this is just used for DH mask generation dh_area = util.create_dark_hole(pup_im, inner_wa, outer_wa, sampling) # Create a direct WebbPSF image for normalization factor fake_aber = np.zeros([nb_seg, zern_max]) psf_perfect = webbim.nircam_nocoro(filter, fake_aber) normp = np.max(psf_perfect) psf_perfect = psf_perfect / normp # Set up NIRCam coro object from WebbPSF nc_coro = webbpsf.NIRCam() nc_coro.filter = filter nc_coro.image_mask = fpm nc_coro.pupil_mask = lyot_stop # Null the OTE OPDs for the PSFs, maybe we will add internal WFE later. nc_coro, ote_coro = webbpsf.enable_adjustable_ote(nc_coro) # create OTE for coronagraph nc_coro.include_si_wfe = False # set SI internal WFE to zero #-# Generating the PASTIS matrix and a list for all contrasts contrast_matrix = np.zeros([nb_seg, nb_seg]) # Generate empty matrix all_psfs = [] all_dhs = [] all_contrasts = [] log.info(f'wfe_aber: {wfe_aber}') for i in range(nb_seg): for j in range(nb_seg): log.info(f'\nSTEP: {i+1}-{j+1} / {nb_seg}-{nb_seg}') # Get names of segments, they're being addressed by their names in the ote functions. seg_i = wss_segs[i].split('-')[0] seg_j = wss_segs[j].split('-')[0] # Put the aberration on the correct segments Aber_WSS = np.zeros([nb_seg, zern_max]) # The Zernikes here will be filled in the WSS order!!! # Because it goes into _apply_hexikes_to_seg(). Aber_WSS[i, wss_zern_nb - 1] = wfe_aber.to(u.m).value # Aberration on the segment we're currently working on; # convert to meters; -1 on the Zernike because Python starts # numbering at 0. Aber_WSS[j, wss_zern_nb - 1] = wfe_aber.to(u.m).value # same for other segment # Putting aberrations on segments i and j ote_coro.reset() # Making sure there are no previous movements on the segments. ote_coro.zero() # set OTE for coronagraph to zero # Apply both aberrations to OTE. If i=j, apply only once! ote_coro._apply_hexikes_to_seg(seg_i, Aber_WSS[i, :]) # set segment i (segment numbering starts at 1) if i != j: ote_coro._apply_hexikes_to_seg(seg_j, Aber_WSS[j, :]) # set segment j # If you want to display it: # ote_coro.display_opd() # plt.show() # Save OPD images for testing opd_name = f'opd_{zern_mode.name}_{zern_mode.convention + str(zern_mode.index)}_segs_{i+1}-{j+1}' plt.clf() ote_coro.display_opd() plt.savefig(os.path.join(resDir, 'OTE_images', opd_name + '.pdf')) log.info('Calculating WebbPSF image') image = nc_coro.calc_psf(fov_pixels=int(im_size_e2e), oversample=1, nlambda=1) psf = image[0].data / normp # Save WebbPSF image to disk filename_psf = f'psf_{zern_mode.name}_{zern_mode.convention + str(zern_mode.index)}_segs_{i+1}-{j+1}' util.write_fits(psf, os.path.join(resDir, 'psfs', filename_psf + '.fits'), header=None, metadata=None) all_psfs.append(psf) log.info('Calculating mean contrast in dark hole') dh_intensity = psf * dh_area contrast = np.mean(dh_intensity[np.where(dh_intensity != 0)]) log.info(f'contrast: {contrast}') # Save DH image to disk and put current contrast in list filename_dh = f'dh_{zern_mode.name}_{zern_mode.convention + str(zern_mode.index)}_segs_{i+1}-{j+1}' util.write_fits(dh_intensity, os.path.join(resDir, 'darkholes', filename_dh + '.fits'), header=None, metadata=None) all_dhs.append(dh_intensity) all_contrasts.append(contrast) # Fill according entry in the matrix contrast_matrix[i,j] = contrast # Transform saved lists to arrays all_psfs = np.array(all_psfs) all_dhs = np.array(all_dhs) all_contrasts = np.array(all_contrasts) # Filling the off-axis elements matrix_two_N = np.copy(contrast_matrix) # This is just an intermediary copy so that I don't mix things up. matrix_pastis = np.copy(contrast_matrix) # This will be the final PASTIS matrix. for i in range(nb_seg): for j in range(nb_seg): if i != j: matrix_off_val = (matrix_two_N[i,j] - matrix_two_N[i,i] - matrix_two_N[j,j]) / 2. matrix_pastis[i,j] = matrix_off_val log.info(f'Off-axis for i{i+1}-j{j+1}: {matrix_off_val}') # Normalize matrix for the input aberration matrix_pastis /= np.square(wfe_aber.value) # Save matrix to file filename_matrix = f'PASTISmatrix_num_{zern_mode.name}_{zern_mode.convention + str(zern_mode.index)}' util.write_fits(matrix_pastis, os.path.join(resDir, filename_matrix + '.fits'), header=None, metadata=None) log.info(f'Matrix saved to: {os.path.join(resDir, filename_matrix + ".fits")}') # Save the PSF and DH image *cubes* as well (as opposed to each one individually) util.write_fits(all_psfs, os.path.join(resDir, 'psfs', 'psf_cube.fits'), header=None, metadata=None) util.write_fits(all_dhs, os.path.join(resDir, 'darkholes', 'dh_cube.fits'), header=None, metadata=None) np.savetxt(os.path.join(resDir, 'pair-wise_contrasts.txt'), all_contrasts, fmt='%e') # Tell us how long it took to finish. end_time = time.time() log.info(f'Runtime for matrix_building.py: {end_time - start_time}sec = {(end_time - start_time) / 60}min') log.info(f'Data saved to {resDir}')
def num_matrix_luvoir(design, savepsfs=False, saveopds=True): """ Generate a numerical PASTIS matrix for a LUVOIR A coronagraph. -- Depracated function, the LUVOIR PASTIS matrix is better calculated with num_matrix_multiprocess(), which can do this for your choice of one of the implemented instruments (LUVOIR, HiCAT, JWST). -- All inputs are read from the (local) configfile and saved to the specified output directory. The LUVOIR STDT delivery in May 2018 included three different apodizers we can work with, you pick which of the three you want with the 'design' parameter. :param design: string, what coronagraph design to use - 'small', 'medium' or 'large' :param savepsfs: bool, if True, all PSFs will be saved to disk individually, as fits files, additionally to the total PSF cube. If False, the total cube will still get saved at the very end of the script. :param saveopds: bool, if True, all pupil surface maps of aberrated segment pairs will be saved to disk as PDF :return overall_dir: string, experiment directory """ # Keep track of time start_time = time.time() ### Parameters # System parameters overall_dir = util.create_data_path(CONFIG_PASTIS.get('local', 'local_data_path'), telescope='luvoir-'+design) os.makedirs(overall_dir, exist_ok=True) resDir = os.path.join(overall_dir, 'matrix_numerical') # Create necessary directories if they don't exist yet os.makedirs(resDir, exist_ok=True) os.makedirs(os.path.join(resDir, 'OTE_images'), exist_ok=True) os.makedirs(os.path.join(resDir, 'psfs'), exist_ok=True) # Set up logger util.setup_pastis_logging(resDir, f'pastis_matrix_{design}') log.info('Building numerical matrix for LUVOIR\n') # Read calibration aberration zern_number = CONFIG_PASTIS.getint('calibration', 'local_zernike') zern_mode = util.ZernikeMode(zern_number) # Create Zernike mode object for easier handling # General telescope parameters nb_seg = CONFIG_PASTIS.getint('LUVOIR', 'nb_subapertures') wvln = CONFIG_PASTIS.getfloat('LUVOIR', 'lambda') * 1e-9 # m diam = CONFIG_PASTIS.getfloat('LUVOIR', 'diameter') # m wfe_aber = CONFIG_PASTIS.getfloat('LUVOIR', 'calibration_aberration') * 1e-9 # m # Image system parameters sampling = CONFIG_PASTIS.getfloat('LUVOIR', 'sampling') # Record some of the defined parameters log.info(f'LUVOIR apodizer design: {design}') log.info(f'Wavelength: {wvln} m') log.info(f'Telescope diameter: {diam} m') log.info(f'Number of segments: {nb_seg}') log.info(f'Sampling: {sampling} px per lambda/D') log.info(f'wfe_aber: {wfe_aber} m') # Copy configfile to resulting matrix directory util.copy_config(resDir) ### Instantiate Luvoir telescope with chosen apodizer design optics_input = CONFIG_PASTIS.get('LUVOIR', 'optics_path') luvoir = LuvoirAPLC(optics_input, design, sampling) ### Reference images for contrast normalization and coronagraph floor unaberrated_coro_psf, ref = luvoir.calc_psf(ref=True, display_intermediate=False, return_intermediate=False) norm = np.max(ref) dh_intensity = (unaberrated_coro_psf / norm) * luvoir.dh_mask contrast_floor = np.mean(dh_intensity[np.where(luvoir.dh_mask != 0)]) log.info(f'contrast floor: {contrast_floor}') ### Generating the PASTIS matrix and a list for all contrasts contrast_matrix = np.zeros([nb_seg, nb_seg]) # Generate empty matrix all_psfs = [] all_contrasts = [] for i in range(nb_seg): for j in range(nb_seg): log.info(f'\nSTEP: {i+1}-{j+1} / {nb_seg}-{nb_seg}') # Put aberration on correct segments. If i=j, apply only once! luvoir.flatten() luvoir.set_segment(i+1, wfe_aber/2, 0, 0) if i != j: luvoir.set_segment(j+1, wfe_aber/2, 0, 0) log.info('Calculating coro image...') image, inter = luvoir.calc_psf(ref=False, display_intermediate=False, return_intermediate='intensity') # Normalize PSF by reference image psf = image / norm all_psfs.append(psf.shaped) # Save image to disk if savepsfs: # TODO: I might want to change this to matplotlib images since I save the PSF cube anyway. filename_psf = f'psf_{zern_mode.name}_{zern_mode.convention + str(zern_mode.index)}_segs_{i+1}-{j+1}' hcipy.write_fits(psf, os.path.join(resDir, 'psfs', filename_psf + '.fits')) # Save OPD images for testing if saveopds: opd_name = f'opd_{zern_mode.name}_{zern_mode.convention + str(zern_mode.index)}_segs_{i+1}-{j+1}' plt.clf() hcipy.imshow_field(inter['seg_mirror'], mask=luvoir.aperture, cmap='RdBu') plt.savefig(os.path.join(resDir, 'OTE_images', opd_name + '.pdf')) log.info('Calculating mean contrast in dark hole') dh_intensity = psf * luvoir.dh_mask contrast = np.mean(dh_intensity[np.where(luvoir.dh_mask != 0)]) log.info(f'contrast: {float(contrast)}') # contrast is a Field, here casting to normal float all_contrasts.append(contrast) # Fill according entry in the matrix and subtract baseline contrast contrast_matrix[i,j] = contrast - contrast_floor # Transform saved lists to arrays all_psfs = np.array(all_psfs) all_contrasts = np.array(all_contrasts) # Save the PSF image *cube* as well (as opposed to each one individually) hcipy.write_fits(all_psfs, os.path.join(resDir, 'psfs', 'psf_cube.fits'),) np.savetxt(os.path.join(resDir, 'pair-wise_contrasts.txt'), all_contrasts, fmt='%e') # Filling the off-axis elements log.info('\nCalculating off-axis matrix elements...') matrix_two_N = np.copy(contrast_matrix) # This is just an intermediary copy so that I don't mix things up. matrix_pastis = np.copy(contrast_matrix) # This will be the final PASTIS matrix. for i in range(nb_seg): for j in range(nb_seg): if i != j: matrix_off_val = (matrix_two_N[i,j] - matrix_two_N[i,i] - matrix_two_N[j,j]) / 2. matrix_pastis[i,j] = matrix_off_val log.info(f'Off-axis for i{i+1}-j{j+1}: {matrix_off_val}') # Normalize matrix for the input aberration - this defines what units the PASTIS matrix will be in. The PASTIS # matrix propagation function (util.pastis_contrast()) then needs to take in the aberration vector in these same # units. I have chosen to keep this to 1nm, so, we normalize the PASTIS matrix to units of nanometers. matrix_pastis /= np.square(wfe_aber * 1e9) # 1e9 converts the calibration aberration back to nanometers # Save matrix to file filename_matrix = f'PASTISmatrix_num_{zern_mode.name}_{zern_mode.convention + str(zern_mode.index)}' hcipy.write_fits(matrix_pastis, os.path.join(resDir, filename_matrix + '.fits')) log.info(f'Matrix saved to: {os.path.join(resDir, filename_matrix + ".fits")}') # Tell us how long it took to finish. end_time = time.time() log.info(f'Runtime for matrix_building.py: {end_time - start_time}sec = {(end_time - start_time) / 60}min') log.info(f'Data saved to {resDir}') return overall_dir
zern_number = CONFIG_PASTIS.getint( 'calibration', 'local_zernike') # Which (Noll) Zernike we are calibrating for wss_zern_nb = util.noll_to_wss( zern_number) # Convert from Noll to WSS framework # If subfolder "calibration" doesn't exist yet, create it. if not os.path.isdir(outDir): os.mkdir(outDir) # If subfolder "images" in "calibration" doesn't exist yet, create it. if not os.path.isdir(os.path.join(outDir, 'images')): os.mkdir(os.path.join(outDir, 'images')) # Create Zernike mode object for easier handling zern_mode = util.ZernikeMode(zern_number) # Create NIRCam objects, one for perfect PSF and one with coronagraph log.info('Setting up the E2E simulation.') nc = webbpsf.NIRCam() # Set filter nc.filter = filter # Same for coronagraphic case nc_coro = webbpsf.NIRCam() nc_coro.filter = filter # Add coronagraphic elements to nc_coro nc_coro.image_mask = fpm nc_coro.pupil_mask = lyot_stop
def analytical_model(zernike_pol, coef, cali=False): """ :param zernike_pol: :param coef: :param cali: bool; True if we already have calibration coefficients to use. False if we still need to create them. :return: """ #-# Parameters dataDir = os.path.join(CONFIG_PASTIS.get('local', 'local_data_path'), 'active') telescope = CONFIG_PASTIS.get('telescope', 'name') nb_seg = CONFIG_PASTIS.getint(telescope, 'nb_subapertures') tel_size_m = CONFIG_PASTIS.getfloat(telescope, 'diameter') * u.m real_size_seg = CONFIG_PASTIS.getfloat( telescope, 'flat_to_flat' ) # in m, size in meters of an individual segment flatl to flat size_seg = CONFIG_PASTIS.getint( 'numerical', 'size_seg') # pixel size of an individual segment tip to tip wvln = CONFIG_PASTIS.getint(telescope, 'lambda') * u.nm inner_wa = CONFIG_PASTIS.getint(telescope, 'IWA') outer_wa = CONFIG_PASTIS.getint(telescope, 'OWA') tel_size_px = CONFIG_PASTIS.getint( 'numerical', 'tel_size_px') # pupil diameter of telescope in pixels im_size_pastis = CONFIG_PASTIS.getint( 'numerical', 'im_size_px_pastis') # image array size in px sampling = CONFIG_PASTIS.getfloat(telescope, 'sampling') # sampling size_px_tel = tel_size_m / tel_size_px # size of one pixel in pupil plane in m px_sq_to_rad = (size_px_tel * np.pi / tel_size_m) * u.rad zern_max = CONFIG_PASTIS.getint('zernikes', 'max_zern') sz = CONFIG_PASTIS.getint( 'ATLAST', 'im_size_lamD_hcipy') # image size in lam/D, only used in ATLAST case # Create Zernike mode object for easier handling zern_mode = util.ZernikeMode(zernike_pol) #-# Mean subtraction for piston if zernike_pol == 1: coef -= np.mean(coef) #-# Generic segment shapes if telescope == 'JWST': # Load pupil from file pupil = fits.getdata( os.path.join(dataDir, 'segmentation', 'pupil.fits')) # Put pupil in randomly picked, slightly larger image array pup_im = np.copy(pupil) # remove if lines below this are active #pup_im = np.zeros([tel_size_px, tel_size_px]) #lim = int((pup_im.shape[1] - pupil.shape[1])/2.) #pup_im[lim:-lim, lim:-lim] = pupil # test_seg = pupil[394:,197:315] # this is just so that I can display an individual segment when the pupil is 512 # test_seg = pupil[:203,392:631] # ... when the pupil is 1024 # one_seg = np.zeros_like(test_seg) # one_seg[:110, :] = test_seg[8:, :] # this is the centered version of the individual segment for 512 px pupil # Creat a mini-segment (one individual segment from the segmented aperture) mini_seg_real = poppy.NgonAperture( name='mini', radius=real_size_seg ) # creating real mini segment shape with poppy #test = mini_seg_real.sample(wavelength=wvln, grid_size=flat_diam, return_scale=True) # fix its sampling with wavelength mini_hdu = mini_seg_real.to_fits(wavelength=wvln, npix=size_seg) # make it a fits file mini_seg = mini_hdu[ 0].data # extract the image data from the fits file elif telescope == 'ATLAST': # Create mini-segment pupil_grid = hcipy.make_pupil_grid(dims=tel_size_px, diameter=real_size_seg) focal_grid = hcipy.make_focal_grid( pupil_grid, sampling, sz, wavelength=wvln.to( u.m).value) # fov = lambda/D radius of total image prop = hcipy.FraunhoferPropagator(pupil_grid, focal_grid) mini_seg_real = hcipy.hexagonal_aperture(circum_diameter=real_size_seg, angle=np.pi / 2) mini_seg_hc = hcipy.evaluate_supersampled( mini_seg_real, pupil_grid, 4 ) # the supersampling number doesn't really matter in context with the other numbers mini_seg = mini_seg_hc.shaped # make it a 2D array # Redefine size_seg if using HCIPy size_seg = mini_seg.shape[0] # Make stand-in pupil for DH array pupil = fits.getdata( os.path.join(dataDir, 'segmentation', 'pupil.fits')) pup_im = np.copy(pupil) #-# Generate a dark hole mask #TODO: simplify DH generation and usage dh_area = util.create_dark_hole( pup_im, inner_wa, outer_wa, sampling ) # this might become a problem if pupil size is not same like pastis image size. fine for now though. if telescope == 'ATLAST': dh_sz = util.zoom_cen(dh_area, sz * sampling) #-# Import information form segmentation script Projection_Matrix = fits.getdata( os.path.join(dataDir, 'segmentation', 'Projection_Matrix.fits')) vec_list = fits.getdata( os.path.join(dataDir, 'segmentation', 'vec_list.fits')) # in pixels NR_pairs_list = fits.getdata( os.path.join(dataDir, 'segmentation', 'NR_pairs_list_int.fits')) # Figure out how many NRPs we're dealing with NR_pairs_nb = NR_pairs_list.shape[0] #-# Chose whether calibration factors to do the calibraiton with if cali: filename = 'calibration_' + zern_mode.name + '_' + zern_mode.convention + str( zern_mode.index) ck = fits.getdata( os.path.join(dataDir, 'calibration', filename + '.fits')) else: ck = np.ones(nb_seg) coef = coef * ck #-# Generic coefficients # the coefficients in front of the non redundant pairs, the A_q in eq. 13 in Leboulleux et al. 2018 generic_coef = np.zeros( NR_pairs_nb ) * u.nm * u.nm # setting it up with the correct units this will have for q in range(NR_pairs_nb): for i in range(nb_seg): for j in range(i + 1, nb_seg): if Projection_Matrix[i, j, 0] == q + 1: generic_coef[q] += coef[i] * coef[j] #-# Constant sum and cosine sum - calculating eq. 13 from Leboulleux et al. 2018 if telescope == 'JWST': i_line = np.linspace(-im_size_pastis / 2., im_size_pastis / 2., im_size_pastis) tab_i, tab_j = np.meshgrid(i_line, i_line) cos_u_mat = np.zeros( (int(im_size_pastis), int(im_size_pastis), NR_pairs_nb)) elif telescope == 'ATLAST': i_line = np.linspace(-(2 * sz * sampling) / 2., (2 * sz * sampling) / 2., (2 * sz * sampling)) tab_i, tab_j = np.meshgrid(i_line, i_line) cos_u_mat = np.zeros((int((2 * sz * sampling)), int( (2 * sz * sampling)), NR_pairs_nb)) # Calculating the cosine terms from eq. 13. # The -1 with each NR_pairs_list is because the segment names are saved starting from 1, but Python starts # its indexing at zero, so we have to make it start at zero here too. for q in range(NR_pairs_nb): # cos(b_q <dot> u): b_q with 1 <= q <= NR_pairs_nb is the basis of NRPS, meaning the distance vectors between # two segments of one NRP. We can read these out from vec_list. # u is the position (vector) in the detector plane. Here, those are the grids tab_i and tab_j. # We need to calculate the dot product between all b_q and u, so in each iteration (for q), we simply add the # x and y component. cos_u_mat[:, :, q] = np.cos( px_sq_to_rad * (vec_list[NR_pairs_list[q, 0] - 1, NR_pairs_list[q, 1] - 1, 0] * tab_i) + px_sq_to_rad * (vec_list[NR_pairs_list[q, 0] - 1, NR_pairs_list[q, 1] - 1, 1] * tab_j)) * u.dimensionless_unscaled sum1 = np.sum( coef**2 ) # sum of all a_{k,l} in eq. 13 - this works only for single Zernikes (l fixed), because np.sum would sum over l too, which would be wrong. if telescope == 'JWST': sum2 = np.zeros( (int(im_size_pastis), int(im_size_pastis)) ) * u.nm * u.nm # setting it up with the correct units this will have elif telescope == 'ATLAST': sum2 = np.zeros( (int(2 * sz * sampling), int(2 * sz * sampling))) * u.nm * u.nm for q in range(NR_pairs_nb): sum2 = sum2 + generic_coef[q] * cos_u_mat[:, :, q] #-# Local Zernike if telescope == 'JWST': # Generate a basis of Zernikes with the mini segment being the support isolated_zerns = zern.hexike_basis(nterms=zern_max, npix=size_seg, rho=None, theta=None, vertical=False, outside=0.0) # Calculate the Zernike that is currently being used and put it on one single subaperture, the result is Zer # Apply the currently used Zernike to the mini-segment. if zernike_pol == 1: Zer = np.copy(mini_seg) elif zernike_pol in range(2, zern_max - 2): Zer = np.copy(mini_seg) Zer = Zer * isolated_zerns[zernike_pol - 1] # Fourier Transform of the Zernike - the global envelope mf = mft.MatrixFourierTransform() ft_zern = mf.perform(Zer, im_size_pastis / sampling, im_size_pastis) elif telescope == 'ATLAST': isolated_zerns = hcipy.make_zernike_basis(num_modes=zern_max, D=real_size_seg, grid=pupil_grid, radial_cutoff=False) Zer = hcipy.Wavefront(mini_seg_hc * isolated_zerns[zernike_pol - 1], wavelength=wvln.to(u.m).value) # Fourier transform the Zernike ft_zern = prop(Zer) #-# Final image if telescope == 'JWST': # Generating the final image that will get passed on to the outer scope, I(u) in eq. 13 intensity = np.abs(ft_zern)**2 * (sum1.value + 2. * sum2.value) elif telescope == 'ATLAST': intensity = ft_zern.intensity.shaped * (sum1.value + 2. * sum2.value) # PASTIS is only valid inside the dark hole, so we cut out only that part if telescope == 'JWST': tot_dh_im_size = sampling * (outer_wa + 3) intensity_zoom = util.zoom_cen( intensity, tot_dh_im_size ) # zoom box is (owa + 3*lambda/D) wide, in terms of lambda/D dh_area_zoom = util.zoom_cen(dh_area, tot_dh_im_size) dh_psf = dh_area_zoom * intensity_zoom elif telescope == 'ATLAST': dh_psf = dh_sz * intensity """ # Create plots. plt.subplot(1, 3, 1) plt.imshow(pupil, origin='lower') plt.title('JWST pupil and diameter definition') plt.plot([46.5, 464.5], [101.5, 409.5], 'r-') # show how the diagonal of the pupil is defined plt.subplot(1, 3, 2) plt.imshow(mini_seg, origin='lower') plt.title('JWST individual mini-segment') plt.subplot(1, 3, 3) plt.imshow(dh_psf, origin='lower') plt.title('JWST dark hole') plt.show() """ # dh_psf is the image of the dark hole only, the pixels outside of it are zero # intensity is the entire final image return dh_psf, intensity