def test_loading_columns(): network = pg.read_network() print('\nstart loading columns\n') st = time() pg.load_columns(network) print('processing time of loading columns :{0: .2f}'.format(time() - st) + 's') print('\nstart column generation\n') st = time() iter_num = 0 column_update_num = 10 pg.perform_network_assignment(1, iter_num, column_update_num, network) print('processing time of column generation:{0: .2f}'.format(time() - st) + 's' f' for {iter_num} assignment iterations and ' f'{column_update_num} iterations in column generation') pg.output_columns(network) pg.output_link_performance(network) print('\npath finding results can be found in agent.csv')
def test_column_generation_py(): network = pg.read_network() print('\nstart column generation\n') st = time() iter_num = 20 column_update_num = 20 pg.perform_network_assignment(1, iter_num, column_update_num, network) print(f'processing time of column generation: {time()-st:.2f} s' f' for {iter_num} assignment iterations and ' f'{column_update_num} iterations in column generation') # if you do not want to include geometry info in the output file, # use pg.output_columns(network, False) pg.output_columns(network) pg.output_link_performance(network)
def test_loading_columns(): network = pg.read_network() print('\nstart loading columns\n') st = time() pg.load_columns(network) print(f'processing time of loading columns: {time()-st:.2f} s') print('\nstart column generation\n') st = time() iter_num = 0 column_update_num = 10 pg.perform_network_assignment(1, iter_num, column_update_num, network) print(f'processing time of column generation: {time()-st:.2f} s' f' for {iter_num} assignment iterations and ' f'{column_update_num} iterations in column generation') pg.output_columns(network) pg.output_link_performance(network)