コード例 #1
0
ファイル: keras_model.py プロジェクト: tushartushar/code2vec
    def predict(self, predict_data_rows: Iterable[str]) -> List[ModelPredictionResults]:
        predict_input_reader = self._create_data_reader(estimator_action=EstimatorAction.Predict)
        input_iterator = predict_input_reader.process_and_iterate_input_from_data_lines(predict_data_rows)
        all_model_prediction_results = []
        for input_row in input_iterator:
            # perform the actual prediction and get raw results.
            input_for_predict = input_row[0][:4]  # we want only the relevant input vectors (w.o. the targets).
            prediction_results = self.keras_model_predict_function(input_for_predict)

            # make `input_row` and `prediction_results` easy to read (by accessing named fields).
            prediction_results = KerasPredictionModelOutput(
                *common.squeeze_single_batch_dimension_for_np_arrays(prediction_results))
            input_row = _KerasModelInputTensorsFormer(
                estimator_action=EstimatorAction.Predict).from_model_input_form(input_row)
            input_row = ReaderInputTensors(*common.squeeze_single_batch_dimension_for_np_arrays(input_row))

            # calculate the attention weight for each context
            attention_per_context = self._get_attention_weight_per_context(
                path_source_strings=input_row.path_source_token_strings,
                path_strings=input_row.path_strings,
                path_target_strings=input_row.path_target_token_strings,
                attention_weights=prediction_results.attention_weights
            )

            # store the calculated prediction results in the wanted format.
            model_prediction_results = ModelPredictionResults(
                original_name=common.binary_to_string(input_row.target_string.item()),
                topk_predicted_words=common.binary_to_string_list(prediction_results.topk_predicted_words),
                topk_predicted_words_scores=prediction_results.topk_predicted_words_scores,
                attention_per_context=attention_per_context,
                code_vector=prediction_results.code_vectors)
            all_model_prediction_results.append(model_prediction_results)

        return all_model_prediction_results
コード例 #2
0
 def from_model_input_form(self, input_row) -> ReaderInputTensors:
     return ReaderInputTensors(
         target_index=input_row[0],
         path_source_token_indices=input_row[1],
         path_indices=input_row[2],
         path_target_token_indices=input_row[3],
         context_valid_mask=input_row[4]
     )
コード例 #3
0
ファイル: keras_model.py プロジェクト: tushartushar/code2vec
 def from_model_input_form(self, input_row) -> ReaderInputTensors:
     inputs, targets = input_row
     return ReaderInputTensors(
         path_source_token_indices=inputs[0],
         path_indices=inputs[1],
         path_target_token_indices=inputs[2],
         context_valid_mask=inputs[3],
         target_index=targets if self.estimator_action.is_train else targets['target_index'],
         target_string=targets['target_string'] if not self.estimator_action.is_train else None,
         path_source_token_strings=inputs[4] if self.estimator_action.is_predict else None,
         path_strings=inputs[5] if self.estimator_action.is_predict else None,
         path_target_token_strings=inputs[6] if self.estimator_action.is_predict else None
     )
コード例 #4
0
    def from_model_input_form(self, input_row) -> ReaderInputTensors:
        inputs, targets = input_row
        return ReaderInputTensors(
            path_source_token_indices=inputs[0],
            path_indices=inputs[1],
            path_target_token_indices=inputs[2],
            context_valid_mask=inputs[3],

            #I'm changing this for the same reason of the changes in previous function.
            #target_index=targets if self.estimator_action.is_train else targets['target_index'],
            #target_string=targets['target_string'] if not self.estimator_action.is_train else None,
            target_index=targets,
            target_string=None,
            path_source_token_strings=inputs[4]
            if self.estimator_action.is_predict else None,
            path_strings=inputs[5]
            if self.estimator_action.is_predict else None,
            path_target_token_strings=inputs[6]
            if self.estimator_action.is_predict else None)