コード例 #1
0
    async def on_start(self) -> None:
        """
        Set up data that require information from the game.

        Note: This function is called automatically at iteration = 0.

        Args:
            None

        Returns:
            None
        """
        raw_game_data = await self._client._execute(data=sc_pb.RequestData(
            ability_id=True,
            unit_type_id=True,
            upgrade_id=True,
            buff_id=True,
            effect_id=True,
        ))
        raw_game_info = await self._client._execute(
            game_info=sc_pb.RequestGameInfo())
        raw_observation = self.state.response_observation
        self.pathing = PathManager(raw_game_data, raw_game_info,
                                   raw_observation)
        self.creeper = Creeper(raw_game_data, raw_game_info, raw_observation)
        # build_selector = BuildOrderManager(self.enemy_race)
        # self.build_order = build_selector.select_build_order()
        with open("builds/1312.pickle", "rb") as f:
            self.build_order = pickle.load(f)  # nosec
        # all possible arguments are handled by BuildOrderManager class
        self.tag_dicts.append(self.pathing.pathing_dict)
        self.target = self.enemy_start_locations[0].position
        await self.chat_send("gl hf")
コード例 #2
0
    def __init__(self, mock_actuator=False):
        self.health_checker = HealthChecker()
        self.health_checker.double_flash()
        self.path_manager = PathManager(verbose=True)
        self.mpc_bridge = MPCBridge()
        self.actuator_bridge = ActuatorBridge(mock=mock_actuator)
        self.health_checker.double_flash()

        self.active = True
コード例 #3
0
    def __init__(self,
                 datapath,
                 model_name,
                 original_size_x,
                 original_size_y,
                 input_size,
                 slice_count_x=1,
                 slice_count_y=1,
                 is_8_channel=True,
                 gpu_number=None,
                 working_dir="/data/working",
                 is_8_bit=True):
        """ 
        Args:
            is_8_channel (bool) - True for 8 channel, false for RGB images.
        """
        # Set up what data is used by current classifier.
        self.slice_count_x = slice_count_x
        self.slice_count_y = slice_count_y
        self.slice_count = slice_count_x * slice_count_y

        self.is_8_channel = is_8_channel
        self.is_8_bit = is_8_bit
        self.channel_count = 8 if is_8_channel else 3

        self.original_size_x = original_size_x
        self.original_size_y = original_size_y

        self.input_size = input_size
        self.path_mgr = PathManager(datapath,
                                    self.slice_count,
                                    is_8_channel,
                                    model_name,
                                    create_dirs=(gpu_number == 0)
                                    or (gpu_number is None),
                                    working_dir=working_dir)

        self.datapath = datapath
        self.prefix = utils.datapath_to_prefix(datapath)

        self.gpu_number = gpu_number
        if gpu_number is None:
            self.device = torch.device('cpu')
            logger.info("Running on CPU")
        else:
            torch.cuda.set_device(gpu_number)
            self.device = torch.device('cuda')  # Get current Cuda device
            logger.info("Running on GPU #{}".format(gpu_number))

        if self.slice_count != 1:
            self.stride_size_x = int((self.original_size_x - self.input_size) /
                                     (self.slice_count_x - 1))
            self.stride_size_y = int((self.original_size_y - self.input_size) /
                                     (self.slice_count_y - 1))
コード例 #4
0
class Coordinator(object):
    STEP_TIME = 0.2

    def __init__(self, mock_actuator=False):
        self.health_checker = HealthChecker()
        self.health_checker.double_flash()
        self.path_manager = PathManager(verbose=True)
        self.mpc_bridge = MPCBridge()
        self.actuator_bridge = ActuatorBridge(mock=mock_actuator)
        self.health_checker.double_flash()

        self.active = True

    def stop_system(self):
        self.active = False

    def start_trip(self,
                   start,
                   destination,
                   use_cv=True,
                   fake_gps=False,
                   speed=None):
        self.health_checker.startup()
        self.health_checker.double_flash()
        self.path_manager.retrieve_path(start, destination)
        self.sensor_fuser = SensorFuser(use_cv=use_cv,
                                        fake_gps=fake_gps,
                                        speed=speed)
        coordinator_thread = threading.Thread(target=self.main_loop)
        coordinator_thread.start()
        self.health_checker.startup_done()

    def main_loop(self):
        time.sleep(10)  # Wait until Arduino & GPS is ready
        while self.active:
            print("INFO: System time is", str(datetime.datetime.now()))
            loop_start = time.time()
            parameters = self.sensor_fuser.retrieve_updates()
            self.path_manager.potentially_update_next(parameters.gps)
            parameters.next_target = self.path_manager.get_next()
            self.health_checker.check(parameters)
            impulses = self.mpc_bridge.request_step(parameters)
            self.actuator_bridge.send(impulses)

            sleep_time = Coordinator.STEP_TIME - (time.time() - loop_start)
            if sleep_time > 0:
                time.sleep(sleep_time)
                print("DEBUG: Main loop took",
                      Coordinator.STEP_TIME - sleep_time)
            else:
                print("WARN: Main loop took long to process: ",
                      Coordinator.STEP_TIME - sleep_time)
        self.sensor_fuser.stop()
コード例 #5
0
    def __init__(
        self, raw_game_data: Any, raw_game_info: Any, raw_observation: Any
    ) -> None:
        """
        Set up variables for use within Creeper.

        Args:
            raw_game_data (Any): self.game_data from main instance
            raw_game_info (Any): self.game_info from main instance
            raw_observation (Any): self.game_state from main instance

        Returns:
            None
        """
        self.bot = BotAI()
        game_data = GameData(raw_game_data.data)
        game_info = GameInfo(raw_game_info.game_info)
        game_state = GameState(raw_observation)
        self.bot._initialize_variables()
        self.bot._prepare_start(
            client=None, player_id=1, game_info=game_info, game_data=game_data
        )
        self.bot._prepare_step(state=game_state, proto_game_info=raw_game_info)
        self.pathing = PathManager(raw_game_data, raw_game_info, raw_observation)
        self.pf = PathFind(self.pathing.map_grid)
コード例 #6
0
def getPathManager():
    # argument parser
    parser = argparse.ArgumentParser()
    parser.add_argument('--project-path',
                        '-a',
                        type=str,
                        required=True,
                        help='Absolute path to project')
    parser.add_argument('--printer',
                        '-p',
                        type=str,
                        required=True,
                        help='Printer name')
    parser.add_argument('--printjob',
                        '-j',
                        type=str,
                        required=True,
                        help='Printer name')
    parser.add_argument('--gen-training-data',
                        '-t',
                        action='store_true',
                        help='Printer name')
    parser.add_argument('--gen-testing-data',
                        '-e',
                        action='store_true',
                        help='Printer name')

    try:
        idx = argv.index('--')
    except ValueError:
        print('No argument to parse')
        idx = 0

    args = parser.parse_args(argv[idx + 1:])

    # get file path
    project_path = args.project_path
    printer_name = args.printer
    printjob_name = args.printjob
    genTrain = args.gen_training_data
    genTest = args.gen_testing_data
    print(project_path, printer_name, printjob_name)

    # import PathManager
    # FIXME: better not use sys.path
    syspath.append(project_path)
    from path_manager import PathManager

    pm = PathManager(abs_path=project_path,
                     printer_name=printer_name,
                     printjob_name=printjob_name)

    return pm, genTrain, genTest
コード例 #7
0
'''
Preprocessing for Training Data
'''

from glob import glob
from os import makedirs, path, rename

import cv2
import numpy as np

from image_processor import ImageProcessor
from path_manager import PathManager

pm = PathManager()

# Preprocess raw images
# filter invaliad images and undistort raw images
# Note that this is should already done in clawer when collecting data.
for printer_name in pm.getPrinterNames():
    pm.setPrinter(printer_name)

    if path.exists(pm.calibration_folder):
        # printer with calibrated information
        print(pm.printer_folder)

        # load calibration data
        ip = ImageProcessor(pm.intrinsic)

        for printjob_name in pm.getPrintJobNames():
            pm.setPrintJob(printjob_name)
            if path.exists(pm.printjob_finish) and not path.exists(pm.images):
コード例 #8
0
from os import path

import imageio

from path_manager import PathManager

pm = PathManager(
    printer_name='S5',
    printjob_name='UMS5_579f7056-b56e-468a-a45f-37a8f0c22d87_20201228185653')

lhs = []
tss = []
with open(pm.test_list, 'r') as fp:
    for line in fp.readlines():
        lh, ts = line.split(', ')
        lhs.append(lh)
        tss.append(ts[:-1])


def makeGIF(input_path, file_list, output_name):
    imgs = []
    for filename in file_list:
        imgs.append(imageio.imread(path.join(input_path, f'{filename}.png')))

    output_file = path.join(pm.printjob_folder, f'{output_name}.gif')
    imageio.mimsave(output_file, imgs)
    print(f'Saved: {output_file}')


makeGIF(pm.images, tss, 'imgs')
makeGIF(pm.raw_images, tss, 'raws')
コード例 #9
0
class Paul(sc2.BotAI):
    """The code that is Paul."""
    def __init__(self) -> None:
        """Set up variables and data for the game."""
        super().__init__()
        self.unit_dict: Dict[int, UnitTypeId] = {}
        self.inject_queens: Set[int] = set()
        self.creep_queens: Set[int] = set()
        self.tag_sets: List[Set[int]] = [self.inject_queens, self.creep_queens]
        self.tag_dicts: List[Units] = [self.unit_dict]
        self.target: Point2 = None
        self.build_order: List[Dict] = []
        self.pathing: Any = None  # class
        self.i: int = 0  # build order index
        self.mode: str = "econ"  # econ or army
        self.rush_start = False

    async def on_start(self) -> None:
        """
        Set up data that require information from the game.

        Note: This function is called automatically at iteration = 0.

        Args:
            None

        Returns:
            None
        """
        raw_game_data = await self._client._execute(data=sc_pb.RequestData(
            ability_id=True,
            unit_type_id=True,
            upgrade_id=True,
            buff_id=True,
            effect_id=True,
        ))
        raw_game_info = await self._client._execute(
            game_info=sc_pb.RequestGameInfo())
        raw_observation = self.state.response_observation
        self.pathing = PathManager(raw_game_data, raw_game_info,
                                   raw_observation)
        self.creeper = Creeper(raw_game_data, raw_game_info, raw_observation)
        # build_selector = BuildOrderManager(self.enemy_race)
        # self.build_order = build_selector.select_build_order()
        with open("builds/1312.pickle", "rb") as f:
            self.build_order = pickle.load(f)  # nosec
        # all possible arguments are handled by BuildOrderManager class
        self.tag_dicts.append(self.pathing.pathing_dict)
        self.target = self.enemy_start_locations[0].position
        await self.chat_send("gl hf")

    async def on_step(self, iteration: int = 0) -> None:
        """
        Call all relevant functions.

        Note: This function is called automatically.

        Args:
            None

        Returns:
            None
        """
        if len(self.units(UnitTypeId.ZERGLING)) >= 6:
            self.rush_start = True
        await self.inject(queen_tags=self.inject_queens)
        if self.rush_start:
            await self.micro()
        creep_grid = np.transpose(self.state.creep.data_numpy)
        if iteration == 0:
            with open("drawn_grids/creep_triton.txt", "w") as f:
                for i in range(creep_grid.shape[0]):
                    for j in range(creep_grid.shape[1]):
                        f.write(str(creep_grid[i][j]))
                    f.write("\n")
        for queen in self.units(UnitTypeId.QUEEN).filter(
                lambda unit: unit.tag in self.creep_queens):
            q_abilities = await self.get_available_abilities(queen)
            if AbilityId.BUILD_CREEPTUMOR_QUEEN in q_abilities:
                enemy_target = self.enemy_start_locations[0].towards(
                    self._game_info.map_center, 5)
                to_e_base = self.pathing.pf.find_path(
                    (floor(queen.position.x), floor(queen.position.y)),
                    (floor(enemy_target.x), floor(enemy_target.y)),
                )[0]
                for i in range(len(to_e_base) - 1, -1, -1):
                    if creep_grid[to_e_base[i]]:
                        pos = Point2((to_e_base[i][0], to_e_base[i][1]))
                        self.do(queen(AbilityId.BUILD_CREEPTUMOR_QUEEN, pos))
                        # CAN'T FIND PROPER POINT
        for tumor in self.structures(UnitTypeId.CREEPTUMORBURROWED):
            abilities = await self.get_available_abilities(tumor)
            if AbilityId.BUILD_CREEPTUMOR_TUMOR in abilities:
                tumor_positions = {
                    unit.position
                    for unit in self.structures.filter(
                        lambda unit: unit.type_id in
                        {UnitTypeId.CREEPTUMORBURROWED, UnitTypeId.CREEPTUMOR})
                }
                location = await self.creeper.find_position(
                    tumor, tumor_positions, creep_grid, self.pathing.map_grid)
                self.do(tumor(AbilityId.BUILD_CREEPTUMOR_TUMOR, location))
        # TODO: place all necessary code above build order due to return statements
        if self.i >= len(self.build_order):
            # TODO: Select new build order instead of switching to army
            self.mode = "army"
        if self.mode == "econ":
            order = self.build_order[self.i]
            if self.supply_used != order["supply"]:
                self.train(UnitTypeId["DRONE"])
            elif self.supply_used == order["supply"]:
                for tech in order["requires"]:
                    if not self.structures(UnitTypeId[tech]).ready:
                        return
                if order["category"] == "struct":
                    if self.workers:
                        worker = self.workers.random
                        if order["name"] == "EXTRACTOR":
                            if self.can_afford(UnitTypeId["EXTRACTOR"]):
                                target = self.vespene_geyser.closest_to(worker)
                                if self.do(worker.build_gas(target)):
                                    self.i += 1
                        elif order["name"] == "SPAWNINGPOOL":
                            pos = self.townhalls[0].position.to2.towards(
                                self._game_info.map_center, 5)
                            if self.can_afford(UnitTypeId["SPAWNINGPOOL"]):
                                if self.do(
                                        worker.build(
                                            UnitTypeId["SPAWNINGPOOL"], pos)):
                                    self.i += 1
                        elif order["name"] == "HATCHERY":
                            if self.minerals >= 300:
                                await self.expand_now()
                                self.i += 1
                elif order["category"] == "unit":
                    if len(self.units(UnitTypeId["LARVA"])) > 0:
                        if self.train(UnitTypeId[order["name"]]):
                            self.i += 1
                elif order["category"] == "upgrade":
                    if self.can_afford(UpgradeId[order["name"]]):
                        self.research(UpgradeId[order["name"]])
                        self.i += 1
        elif self.mode == "army":
            if (not self.already_pending(UnitTypeId["SPAWNINGPOOL"])
                    and not self.structures(UnitTypeId["SPAWNINGPOOL"]).ready):
                if self.can_afford(UnitTypeId["SPAWNINGPOOL"]):
                    pos = self.townhalls[0].position.to2.towards(
                        self._game_info.map_center, 5)
                    if self.can_afford(
                            UnitTypeId["SPAWNINGPOOL"]) and self.workers:
                        worker = self.workers.closest_to(pos)
                        self.do(worker.build(UnitTypeId["SPAWNINGPOOL"], pos))
                else:
                    return
            if self.supply_left <= 2:
                if not self.already_pending(UnitTypeId["OVERLORD"]):
                    self.train(UnitTypeId["OVERLORD"])
            self.train(UnitTypeId["ZERGLING"],
                       amount=len(self.units(UnitTypeId["LARVA"])))
            self.train(UnitTypeId["QUEEN"])

    async def on_unit_created(self, unit: Unit) -> None:
        """
        Add unit to dictionaries and determine what should happen to each spawned unit.

        Note: This function is called automatically.

        Args:
            unit (Unit): the unit created

        Returns:
            None
        """
        self.unit_dict[unit.tag] = unit.type_id

        # drone protocol (prioritize gas -> minerals)
        if unit.type_id in {UnitTypeId.DRONE}:
            for extractor in self.gas_buildings.ready:
                if extractor.assigned_harvesters < 3:
                    self.do(unit.gather(extractor))
                    return
            for base in self.townhalls.ready:
                if base.assigned_harvesters < 16:
                    self.do(
                        unit.gather(
                            self.mineral_field.closest_to(base.position)))
                    return

        # queen protocol (inject > creep > unassigned)
        if unit.type_id in {UnitTypeId.QUEEN}:
            if len(self.inject_queens) < min(len(self.townhalls), 3):
                self.inject_queens.add(unit.tag)
                return
            elif len(self.creep_queens) < 4:
                self.creep_queens.add(unit.tag)
                return

    async def on_unit_destroyed(self, unit_tag: int) -> None:
        """
        Remove dead units from stored data points, replace structures/drones.

        Note: This function is called automatically.

        Args:
            unit_tag (int): tag of the deceased unit

        Returns:
            None
        """
        # clean up lists and sets
        for tag_set in self.tag_sets:  # type: Union[list, set]
            if unit_tag in tag_set:
                tag_set.remove(unit_tag)

        # clean up dictionaries
        for tag_dict in self.tag_dicts:  # type: Dict
            if unit_tag in tag_dict:
                del tag_dict[unit_tag]

    async def on_building_construction_complete(self, unit: Unit) -> None:
        """
        Determine if anything needs to be done when a building finishes.

        Note: This function is called automatically.

        Args:
            unit (Unit): the building completed

        Returns:
            None
        """
        # immediately assign workers to geyser
        if unit.type_id in {UnitTypeId.EXTRACTOR, UnitTypeId.EXTRACTORRICH}:
            gas_drones = self.workers.closest_n_units(unit, 3)
            for drone in gas_drones:
                self.do(drone.gather(unit))
            return

    async def inject(self, queen_tags: Set[int]) -> None:
        """
        Inject townhalls.

        Args:
            queen_tags (Set[int]): tags of queens assigned to inject

        Returns:
            None
        """
        queens = self.units.tags_in(queen_tags)
        for queen in queens:
            abilities = await self.get_available_abilities(queen)
            if AbilityId.EFFECT_INJECTLARVA in abilities:
                possible_targets = self.townhalls.filter(
                    lambda unit: BuffId.QUEENSPAWNLARVATIMER not in unit.buffs)
                if possible_targets:
                    inject_target = possible_targets.closest_to(queen)
                    self.do(queen(AbilityId.EFFECT_INJECTLARVA, inject_target))

    async def on_enemy_unit_entered_vision(self, unit: Unit) -> None:
        """
        Decide what to do based on where the unit is.

        Args:
            unit (Unit): the enemy that entered vision

        Returns:
            None
        """
        if unit.type_id not in {
                UnitTypeId.DRONE, UnitTypeId.PROBE, UnitTypeId.SCV
        }:
            if self._distance_pos_to_pos(
                    unit, self.townhalls.closest_to(unit)) <= 20:
                self.mode = "army"

    async def micro(self, unit_tags: List[int] = []) -> None:
        """
        Issue unit commands for microing.

        Args:
            unit_tags (List[int]): Set of units to micro. If empty, micro all units

        Returns:
            None
        """
        if not unit_tags:
            attackers = self.units.filter(
                lambda unit: unit.tag not in self.inject_queens | self.
                creep_queens and unit.type_id not in
                {UnitTypeId.OVERLORD, UnitTypeId.DRONE, UnitTypeId.LARVA})
        else:
            attackers = self.units.filter(lambda unit: unit.tag in unit_tags)
        for unit in attackers:
            self.do(
                unit.attack(
                    self.pathing.follow_path(
                        unit=unit,
                        default=self.enemy_start_locations[0].position)))
        pass
コード例 #10
0
from os import path, makedirs
import pathlib
import numpy as np

from path_manager import PathManager
from segmentation import Evaluator
from visualization_client import DetectorVisualizerClient

# path manager
pm = PathManager(abs_path=pathlib.Path(__file__).parent.absolute(), printer_name='S5', printjob_name='UMS5_4064a7f6-d290-485e-83ca-373373bebcae_20210111154854')
# evaluator
evaluator = Evaluator('segmentation/model/PAN-se_resnet50-aug-best_model-traced.pth')
# visualizer
vc = DetectorVisualizerClient(pm.printer_name + ' (Offline)')
vc.sendPrinterInfo(printjob_name=pm.printjob_name)

if not path.exists(pm.seg_images):
    makedirs(pm.seg_images)
if not path.exists(pm.iou_images):
    makedirs(pm.iou_images)
if not path.exists(pm.blend_images):
    makedirs(pm.blend_images)

eval_result_fp = open(pm.eval_result, 'w')
iou_list = [1.0 for _ in range(10)]

with open(pm.test_list, 'r') as fp:
    for line in fp.readlines():
        lh, ts = line.split(', ')

        input_path = path.join(pm.images, f'{ts[:-1]}.png')
コード例 #11
0
        return None

    def _exeCmd(self, cmd):
        print(cmd)
        subprocess.run(cmd)
        print('Simulation finished')


if __name__ == "__main__":

    ''' Offline Simulation '''
    from os import path

    max_thread_num = 5

    pm = PathManager(abs_path=pathlib.Path(__file__).parent.absolute())

    # generate training data
    for printer_name in pm.getPrinterNames():
        pm.setPrinter(printer_name)
        if path.exists(pm.calibration_folder):
            for printjob_name in pm.getPrintJobNames():
                pm.setPrintJob(printjob_name)
                if path.exists(pm.images):
                    # limit number of threads 
                    while threading.active_count() >= max_thread_num:
                        # check every 5 mins
                        time.sleep(300)

                    print('thread counts', threading.active_count())
コード例 #12
0
import os

from argument_parser import ArgumentParser
from configs_writer import ConfigsWriter
from corner_detector import CornerDetector
from extrinsics_calibrator import extrinsics_calibrator
from intrinsics_calibrator import intrinsics_calibrator
from path_manager import PathManager

if __name__ == '__main__':
    ArgumentParser._argument = ArgumentParser.args_parser().parse_args()
    path_manager = PathManager().set_path_manager_options(
        ArgumentParser.get_path_manager_options())

    intrinsics_calibrator.remove_non_chess_images(
        path_manager.intrinsic_image_dir(),
        path_manager.remove_non_chess_image_pro_dir())

    intrinsics_calibrator.calibrate_intrinsics(
        path_manager.intrinsic_image_dir())

    intrinsics_calibrator.sort_out_result(path_manager.intrinsic_image_dir())

    ConfigsWriter.write_total_configs(path_manager.extrinsics_image_dir())
    ConfigsWriter.write_front_configs(
        path_manager.intrinsic_image_dir(),
        path_manager.extrinsics_image_dir(),
        path_manager.front_template_camera_configs_path())

    ConfigsWriter.write_right_configs(
        path_manager.intrinsic_image_dir(),
コード例 #13
0
class BaseClassifier:
    def __init__(self,
                 datapath,
                 model_name,
                 original_size_x,
                 original_size_y,
                 input_size,
                 slice_count_x=1,
                 slice_count_y=1,
                 is_8_channel=True,
                 gpu_number=None,
                 working_dir="/data/working",
                 is_8_bit=True):
        """ 
        Args:
            is_8_channel (bool) - True for 8 channel, false for RGB images.
        """
        # Set up what data is used by current classifier.
        self.slice_count_x = slice_count_x
        self.slice_count_y = slice_count_y
        self.slice_count = slice_count_x * slice_count_y

        self.is_8_channel = is_8_channel
        self.is_8_bit = is_8_bit
        self.channel_count = 8 if is_8_channel else 3

        self.original_size_x = original_size_x
        self.original_size_y = original_size_y

        self.input_size = input_size
        self.path_mgr = PathManager(datapath,
                                    self.slice_count,
                                    is_8_channel,
                                    model_name,
                                    create_dirs=(gpu_number == 0)
                                    or (gpu_number is None),
                                    working_dir=working_dir)

        self.datapath = datapath
        self.prefix = utils.datapath_to_prefix(datapath)

        self.gpu_number = gpu_number
        if gpu_number is None:
            self.device = torch.device('cpu')
            logger.info("Running on CPU")
        else:
            torch.cuda.set_device(gpu_number)
            self.device = torch.device('cuda')  # Get current Cuda device
            logger.info("Running on GPU #{}".format(gpu_number))

        if self.slice_count != 1:
            self.stride_size_x = int((self.original_size_x - self.input_size) /
                                     (self.slice_count_x - 1))
            self.stride_size_y = int((self.original_size_y - self.input_size) /
                                     (self.slice_count_y - 1))

    def load_image_id_list(self, split):
        """ Loads list of image ids from csv file, either for training or validation.
        Args:
            split (DataSplit): One of Train, Validation or Test.
        """
        fn_list = self.path_mgr.get_image_list_csv_path(split)
        df = pd.read_csv(fn_list, index_col='ImageId')
        return [image_id for image_id in df.index]
コード例 #14
0
                    action='store_true',
                    help='Visualize result')
args = parser.parse_args()
# arguments
printer_name = args.printer
do_simulate = args.simulate
do_evaluate = args.evaluate
if do_evaluate:
    do_simulate = True
do_visualize = args.visualizer

# printer (specified in ultimaker.ini)
printer = Printer(printer_name)

# path manager
pm = PathManager(printer_name=printer_name,
                 abs_path=pathlib.Path(__file__).parent.absolute())

# evaluator
evaluator = None
if do_evaluate:
    # create folder
    # load evaluation model
    evaluator = Evaluator(
        'segmentation/model/PAN-se_resnet50-aug-best_model-traced.pth')
# visualizer
vc = None
if do_visualize:
    vc = DetectorVisualizerClient(pm.printer_name)

while True:
    # check printer state every minute