コード例 #1
0
def run_process_by_pathos_nonblockingmap(pos_arr, dc_arr):
    this_function_name = inspect.currentframe().f_code.co_name
    print("Begin {}...".format (this_function_name))
    pool = ProcessPool(nodes=8)
    # do a non-blocking map, then extract the results from the iterator
    results = pool.imap(run_once, pos_arr, dc_arr) 
    list(results)
コード例 #2
0
ファイル: evoalgo_svm.py プロジェクト: Sowul/18z_wmh
    def fit(self, X, y):
        """Fit estimator.

        Args:
            X : array-like
                The data to fit.

            y : array-like
                The target variable.

        """
        self.X = np.asarray(X)
        self.y = np.asarray(y).reshape(y.shape[0], )
        self._base_score = cross_val_score(self.clf,
                                           self.X,
                                           y=self.y,
                                           scoring=self.metric,
                                           cv=self.cv).mean()
        print("Base score: {}\n".format(self._base_score))
        self._best_score = self._base_score

        population = self._create_population()
        gen = 0
        total_time = 0

        for i in trange(self.max_iter, desc='Generation', leave=False):
            self.generation_plot.append(population.tolist())
            p = ProcessPool(nodes=multiprocessing.cpu_count())

            start = timer()
            self._individuals = p.map(self._score_ind, population)
            total_time = total_time + timer() - start

            self._Generations.append(self._individuals)

            best = sorted(self._individuals,
                          key=lambda tup: tup.score,
                          reverse=True)[0]

            self._best_individuals.append(
                self._BestIndividual(gen, best.params, best.score))
            if (gen == 0):
                self._best_score = self._best_individuals[gen]
            if (best.score > self._best_score.score):
                self._best_score = self._best_individuals[gen]
            else:
                pass

            self._gen_score.append(
                self._Generation(
                    gen,
                    sum([tup[1] for tup in self._individuals]) /
                    len(self._individuals), self._best_individuals[gen]))

            population = self._create_next_generation(self._individuals)
            self._individuals = []
            gen += 1
        else:
            print('gen: {}'.format(gen))
            print('avg time per gen: {0:0.1f}'.format(total_time / gen))
コード例 #3
0
    def transform(self, X, columns=None):
        """
        Given X, create features of fitted studies
        :param X: Dataset with features used to create fitted studies
        :return:
        """

        # Remove trailing identifier in column list if present
        if columns is not None:
            columns = [re.sub(r'_[0-9]+$', '', s) for s in columns]

        X.columns = X.columns.str.lower()  # columns must be lower case
        pool = ProcessPool(nodes=self.n_jobs)  # Number of jobs
        self.result = []

        # Iterate fitted studies and calculate TA with fitted parameter set
        for ind in self.fitted:
            # Create field if no columns or is in columns list
            if columns is None or ind.res_y.name in columns:
                self.result.append(pool.apipe(ind.transform, X))

        # Blocking wait for asynchronous results
        self.result = [res.get() for res in self.result]

        # Combine results into dataframe to return
        res = pd.concat(self.result, axis=1)
        return res
コード例 #4
0
    def cluster_search(self):

        _log('CLUSTER SEARCH')
        target_kwargs = dict(self.cfg)

        def target(infile):
            return _process_clusters(infile, **target_kwargs)

        if self.cfg.ncpu > 1:
            pool = ProcessPool(nodes=min(self.cfg.ncpu, len(self.infiles)))
            all_out_arrays = pool.map(target, self.infiles)
            _log('CLUSTER REDUCTION')
            all_out_arrays = reduce(lambda a, b: a + b, all_out_arrays)

            _log('CLUSTER OUTPUT')
            with h5py.File(self.cfg.outfile, 'a', libver=libver) as f:
                for out_array in all_out_arrays:
                    self._write_cluster(f, out_array)
        else:
            for infile in self.infiles:
                all_out_arrays = target(infile)
                _log('CLUSTER OUTPUT (PARTIAL)')
                with h5py.File(self.cfg.outfile, 'a', libver=libver) as f:
                    for out_array in all_out_arrays:
                        self._write_cluster(f, out_array)

        return
コード例 #5
0
def map_list_in_chunks(l, f, extra_data):
    '''
    A wrapper around ProcessPool.uimap that processes a list in chunks.
    Differs from `map_list_as_chunks` in that this method calls `f` once for each item in `l`.

    uimap already chunks but if you have extra data to pass in it will pickle
    it for every item. This function passes in the extra data to each chunk
    which significantly saves on pickling.
    https://stackoverflow.com/questions/53604048/iterating-the-results-of-a-multiprocessing-list-is-consuming-large-amounts-of-me

    Parameters
    ----------
    l : list
      the list
    f : function
      the function to process each item
      takes two parameters: item, extra_data
    extra_data : object
      the extra data to pass to each f
    '''
    cpus = cpu_count()
    chunk_length = max(1, int(len(l) / cpus))
    chunks = [l[x:x + chunk_length] for x in range(0, len(l), chunk_length)]
    pool = Pool(nodes=cpus)
    f_dumps = cloudpickle.dumps(f)
    tuples = [(chunk, f_dumps, extra_data) for chunk in chunks]
    mapped_chunks = pool.map(_process_chunk, tuples)
    return (item for chunk in mapped_chunks for item in chunk)
コード例 #6
0
def Scrap_landing(allowed_domains, start_urls):
    pool = ProcessPool(nodes=4)

    def f_runner(spider):
        ScrapperSpider.allowed_domains = [allowed_domains]
        ScrapperSpider.start_urls = [start_urls]
        from twisted.internet import reactor
        from scrapy.settings import Settings
        import Scrapper.settings as my_settings
        from scrapy.crawler import CrawlerProcess, CrawlerRunner
        crawler_settings = Settings()
        crawler_settings.setmodule(my_settings)
        runner = CrawlerRunner(settings=crawler_settings)
        deferred = runner.crawl(spider)
        deferred.addBoth(lambda _: reactor.stop())
        reactor.run()

    #ScrapperSpider.allowed_domains = [allowed_domains]
    #ScrapperSpider.start_urls = [start_urls]
    #print("\nstart URLS:{}".format(ScrapperSpider.start_urls))
    results = pool.amap(f_runner, [ScrapperSpider])
    t = 0
    while not results.ready():
        time.sleep(5);
        print(".", end=' ');
        t = t + 5
        if t == 30:
            print("\nProcess limited to 30 seconds...EXITING\n");
            return None

    pool.clear()
コード例 #7
0
def AllocateParticlesInBins(B, num_nodes, step_data):
    #seeds not being used at the moment
    magnitude = 1000.0

    particle_data = []
    phi_data = []
    psi_data = []
    target_ids = []
    B_copies = [B]
    magnitude_copies=[]

    for j in range(B.length()):
        angles = BinMidpoints(B, j)
        phi_data.append(angles[0])
        psi_data.append(angles[1])
        target_ids.append(j)
        B_copies.append(B)
        magnitude_copies.append(magnitude)

    pool = ProcessPool(nodes = num_nodes)
    particle = AlanineDipeptideSimulation()

    #positionsset = pool.map(particle.move_particle_to_bin, phi_data, psi_data, step_data, seeds, B_copies, target_ids)
    positionsset = pool.map(particle.move_particle_to_bin_minenergy, phi_data, psi_data, magnitude_copies)
    #positions = particle.move_particle_to_bin(1,1, step_data[0], seeds[0])

    return positionsset
コード例 #8
0
def getdates(year, par=False):
    ''' Use gsutil to read files for a specific year'''

    __bucket__ = 'earthenginepartners-hansen'
    __location__ = 'gs://%s/GLADalert/%d' % (__bucket__, year)

    dates = os.popen('gsutil ls %s' % __location__).read().split()

    print('number of dates: ', len(dates))

    ret = []

    if par:
        from pathos.multiprocessing import ProcessPool
        pool = ProcessPool(nodes=25)

        def pl(i):
            return os.popen('gsutil ls %s' % i).read().split()

        dates = pool.imap(pl, dates)

    else:
        (os.popen('gsutil ls %s' % i).read().split() for i in dates)

    for i in dates:
        ret.extend(i)

    return ret
コード例 #9
0
def map_list_as_chunks(l, f, extra_data, cpus=None, max_chunk_size=None):
    '''
    A wrapper around `pathos.multiprocessing.ProcessPool.uimap` that processes a list in chunks.
    Differs from `map_list_in_chunks` in that this method calls `f` once for each chunk.

    uimap already chunks but if you have extra data to pass in it will pickle
    it for every item. This function passes in the extra data to each chunk
    which significantly saves on pickling.
    https://stackoverflow.com/questions/53604048/iterating-the-results-of-a-multiprocessing-list-is-consuming-large-amounts-of-me

    Parameters
    ----------
    l : list
      the list
    f : function
      the function to process each item
      takes two parameters: chunk, extra_data
    extra_data : object
      the extra data to pass to each f
    cpus : int
      the number of cores to use to split the chunks across
    max_chunk_size : int
      the maximum size for each chunk
    '''
    cpus = cpu_count() if cpus is None else cpus
    max_chunk_size = float('inf') if max_chunk_size is None else max_chunk_size
    chunk_length = min(max_chunk_size, max(1, ceil(len(l) / cpus)))
    chunks = [l[x:x + chunk_length] for x in range(0, len(l), chunk_length)]
    pool = Pool(nodes=cpus)
    f_dumps = cloudpickle.dumps(f)
    tuples = [(chunk, f_dumps, extra_data) for chunk in chunks]
    return pool.map(_process_whole_chunk, tuples)
コード例 #10
0
def make_predictions_by_t_local_map_general(model_name, in_dir, timepoints,
                                            allowed_gpus=[0],
                                            chunk_size=(200, 150, 150)):
    """ Make predictions for all timepoints, using all local gpus

    Args:
      model_name: name of model to use, will be looked up
      in_dir: absolute path to data dir
      timepoints: list of timepoints to process
      chunk_size: size of chunks to proces volume in
      allowed_gpus: CUDA ids of GPUs to use
         job will be parallelized across GPUs

    """
    n_gpus = len(allowed_gpus)
    split_timepoints = np.array_split(timepoints, n_gpus)
    devices = ['/gpu:{}'.format(idx) for idx in allowed_gpus]
    starred_args = list(zip(split_timepoints,
                            [in_dir] * n_gpus,
                            [model_name] * n_gpus,
                            [chunk_size] * n_gpus,
                            devices))


    def _star_helper(args):
        return _local_predict_helper_general(*args)


    print("Creating pool")
    pool = Pool(n_gpus)

    print("Dispatching jobs")
    pool.map(_star_helper, starred_args)
コード例 #11
0
def build_coarse_model_voronoi(B, num_samples_per_bin, num_nodes, num_steps):
    n_bins = B.length()
    pool = ProcessPool(nodes = num_nodes)

    num_steps = [num_steps for x in range(num_samples_per_bin)]
    seed_data = [x for x in range(num_samples_per_bin)]
    Transitions = []

    particle = AlanineDipeptideSimulation()
    particle.Bins = B
    particle.temperature = 1000

    T = np.zeros((n_bins,n_bins))

    for j in range(n_bins):
        particle.positions = B.Ω[j]
        Transitions.append(pool.map(particle.sample_voronoi, num_steps, seed_data))

        for j in range(len(Transitions)):
            T[Transitions[j][0], Transitions[j][1]] = T[Transitions[j][0], Transitions[j][1]] + 1

    for j in range(n_bins):
        if (sum(T[j,:])==0):
            #print('No transitions in row', j, flush = True)
            T[j,j]=1

        T[j,:] = T[j,:] / sum(T[j,:])

    return T
コード例 #12
0
ファイル: pareto.py プロジェクト: Zhaojp-Frank/dtr-prototype
def pareto(callback, budgets : List[float], heuristic, runtime, verbose=True, **kwargs):
  def safe_callback(rt):
    result = 'pass'
    t = time.time()
    try:
      callback(rt)
    except MemoryError:
      result = 'fail (OOM)'
    except RematExceededError:
      result = 'fail (thrashed)'
    except:
      import traceback
      traceback.print_exc()
      print(flush=True)
      raise
    total_time = time.time() - t
    rt.meta['total_time'] = total_time
    if verbose:
      print('  budget {} finished in {} seconds: {}'.format(
        rt.budget, total_time, result
      ), flush=True)

    rt._prepickle()
    return rt

  if verbose:
    print('running pareto trial for budgets: {}'.format(budgets), flush=True)

  p = Pool()

  runtimes = list(map(lambda b: runtime(b, heuristic, **kwargs), budgets))
  runtimes = p.map(safe_callback, runtimes)

  return runtimes
コード例 #13
0
def make_cache():
    from grid2viz.src.manager import (
        scenarios,
        agents,
        make_episode_without_decorate,
        n_cores,
        retrieve_episode_from_disk,
        save_in_ram_cache,
        cache_dir,
    )

    from pathos.multiprocessing import ProcessPool

    if not os.path.exists(cache_dir):
        print(
            "Starting Multiprocessing for reading the best agent of each scenario"
        )

    # TODO: tous les agents n'ont pas forcément tourner sur exactement tous les mêmes scenarios
    # Eviter une erreur si un agent n'a pas tourné sur un scenario
    agent_scenario_list = [(agent, scenario) for agent in agents
                           for scenario in scenarios]

    agents_data = []
    if n_cores == 1:  # no multiprocess useful for debug if needed
        i = 0
        for agent_scenario in agent_scenario_list:
            agents_data.append(
                make_episode_without_decorate(agent_scenario[0],
                                              agent_scenario[1]))
            i += 1
    else:
        pool = ProcessPool(n_cores)
        agents_data = list(
            pool.imap(
                make_episode_without_decorate,
                [agent_scenario[0]
                 for agent_scenario in agent_scenario_list],  # agents
                [agent_scenario[1] for agent_scenario in agent_scenario_list],
            )
        )  # scenarios #we go over all agents and all scenarios for each agent
        pool.close()
        print("Multiprocessing done")

    #####
    # saving data on disk
    i = 0
    for agent_scenario in agent_scenario_list:
        print(i)
        agent = agent_scenario[0]
        episode_name = agent_scenario[1]
        agent_episode = agents_data[i]
        if agent_episode is not None:
            episode_data = retrieve_episode_from_disk(
                agent_episode.episode_name, agent_episode.agent)

            agent_episode.decorate(episode_data)
            save_in_ram_cache(agent_episode.episode_name, agent_episode.agent,
                              agent_episode)
        i += 1
コード例 #14
0
ファイル: camera_test.py プロジェクト: jinyx728/CS229
    def get_circle_fill_objs(self, start_camera_pos, n_cameras):
        max_n_threads = 40
        n_threads = min(n_cameras, max_n_threads)
        cx, cy = start_camera_pos[0], start_camera_pos[1]
        cz = self.center[2]
        r = np.abs(start_camera_pos[2] - cz)

        def f(camera_i):
            theta = camera_i / n_cameras * (2 * np.pi)
            x = r * np.sin(theta) + cx
            z = r * np.cos(theta) + cz
            camera_pos = np.array([x, cy, z])
            deg = theta / np.pi * 180
            deg_str = '{}'.format(int(deg))
            meshlab_R = self.get_meshlab_R(camera_pos, np.array([cx, cy, cz]))
            self.write_meshlab_camera(
                join(self.frames_dir, 'meshlab_camera_{}.txt'.format(deg_str)),
                camera_pos, meshlab_R)
            self.get_fill_obj(camera_pos,
                              postfix=deg_str,
                              frame=camera_i,
                              check=False)

        pool = ProcessPool(nodes=n_threads)
        pool.map(f, range(n_cameras))
コード例 #15
0
 def start_cache(self):
     pool = Pool(self.WORKERS)
     for status in pool.map(self.parallel_cache, self.nodes):
         if "ERROR" in status:
             STREAM.error(status)
         else:
             STREAM.success(status)
コード例 #16
0
def make_predictions_by_t_local_map(model_name, chunk_size=(300, 150, 150), allowed_gpus=list(range(8)), timepoints=None):
    """ Make predictions for all timepoints, using all local gpus
    """
    from division_detection.vol_preprocessing import VOL_DIR_H5

    # fetch the number of timepoints
    num_vols = len(os.listdir(VOL_DIR_H5))
    if timepoints is None:
        timepoints = timepoints or np.arange(3,  num_vols - 4)
    n_gpus = len(allowed_gpus)
    split_timepoints = np.array_split(timepoints, n_gpus)
    devices = ['/gpu:{}'.format(idx) for idx in allowed_gpus]
    starred_args = list(zip(split_timepoints,
                            [model_name] * n_gpus,
                            [chunk_size] * n_gpus,
                            devices))

    def _star_helper(args):
        return _predict_local_helper(*args)

    print("Creating pool")
    pool = Pool(n_gpus)

    print("Dispatching jobs")
    pool.map(_star_helper, starred_args)
コード例 #17
0
    def interloper_search(self):

        _log('INTERLOPER SEARCH')
        # must not put 'self' in the function, so copy the dict
        target_kwargs = dict(self.cfg)

        def target(infile):
            return _process_interlopers(infile, **target_kwargs)

        if self.cfg.ncpu > 1:
            pool = ProcessPool(ncpus=min(self.cfg.ncpu, len(self.infiles)))
            all_out_arrays = pool.map(target, self.infiles)
        else:
            all_out_arrays = list()
            for infile in self.infiles:
                all_out_arrays.append(target(infile))

        _log('INTERLOPER REDUCTION')
        all_out_arrays = np.vstack(all_out_arrays)
        unique_keys = np.unique(all_out_arrays['is_near'])
        _log('INTERLOPER OUTPUT')
        with h5py.File(self.cfg.outfile, 'a', libver=libver) as f:
            for ik, cluster_id in enumerate(unique_keys):
                if ik % 1000 == 0:
                    _log('  ', ik, '/', unique_keys.size)
                interlopers = all_out_arrays[all_out_arrays['is_near'] ==
                                             cluster_id]
                self._write_interlopers(f, cluster_id, interlopers)
        return
コード例 #18
0
def CreateMovie(saveFrame, nFrames, fps, test='Ronchi', fixedLight=True, fringe=stepFringe, nX=1001):
   '''Generate all the frames, create the video,
   then delete the individual frames.
   '''
   # file name for the final animation
   if fixedLight:
      name = test + "_fixedlight"
   else:
      name = test + "_samelightgrating" 

   print("Generate all frames")
   f = lambda iFrame: saveFrame(iFrame, './figures/_tmp%05d.jpg'%iFrame, test=test, fixedLight=fixedLight)
   pool = ProcessPool(nodes=3)
   pool.map(f, range(nFrames))

   print("Resize images")
   # resize the images to have even pixel sizes on both dimensions, important for ffmpeg
   # this commands preserves the aspect ratio, rescales the image to fill HD as much as possible,
   # without cropping, then pads the rest with white
   for iFrame in range(nFrames):
      fname = './figures/_tmp%05d.jpg'%iFrame 
      #os.system("convert "+fname+" -resize 1280x720 -gravity center -extent 1280x720 -background white "+fname)
      os.system("convert "+fname+" -resize 1000x1000 -gravity center -extent 1000x1000 -background white "+fname)

   # delete old animation
   os.system("rm ./figures/"+name+".mp4")
   print("Create new animation")
   #os.system("ffmpeg -r "+str(fps)+" -i ./figures/_tmp%05d.jpg -s 1280x720 -vcodec libx264 -pix_fmt yuv420p ./figures/ronchi.mp4")
   os.system("ffmpeg -r "+str(fps)+" -i ./figures/_tmp%05d.jpg -s 1000x1000 -vcodec libx264 -pix_fmt yuv420p ./figures/"+name+".mp4")


   # delete images
   os.system("rm ./figures/_tmp*.jpg")
コード例 #19
0
    def _calculate_powder(self):
        """
        Calculates powder data (a_tensors, b_tensors according to aCLIMAX manual).
        """
        # define container for powder data
        powder = AbinsModules.PowderData(num_atoms=self._num_atoms)

        k_indices = sorted(self._frequencies.keys(
        ))  # make sure dictionary keys are in the same order on each machine
        b_tensors = {}
        a_tensors = {}

        if PATHOS_FOUND:
            threads = AbinsModules.AbinsParameters.threads
            p_local = ProcessPool(nodes=threads)
            tensors = p_local.map(self._calculate_powder_k, k_indices)
        else:
            tensors = [self._calculate_powder_k(k=k) for k in k_indices]

        for indx, k in enumerate(k_indices):
            a_tensors[k] = tensors[indx][0]
            b_tensors[k] = tensors[indx][1]

        # fill powder object with powder data
        powder.set(dict(b_tensors=b_tensors, a_tensors=a_tensors))

        return powder
コード例 #20
0
ファイル: CalculatePowder.py プロジェクト: DanNixon/mantid
    def _calculate_powder(self):
        """
        Calculates powder data (a_tensors, b_tensors according to aCLIMAX manual).
        """
        # define container for powder data
        powder = AbinsModules.PowderData(num_atoms=self._num_atoms)

        k_indices = sorted(self._frequencies.keys())  # make sure dictionary keys are in the same order on each machine
        b_tensors = {}
        a_tensors = {}

        if PATHOS_FOUND:
            threads = AbinsModules.AbinsParameters.threads
            p_local = ProcessPool(nodes=threads)
            tensors = p_local.map(self._calculate_powder_k, k_indices)
        else:
            tensors = [self._calculate_powder_k(k=k) for k in k_indices]

        for indx, k in enumerate(k_indices):
            a_tensors[k] = tensors[indx][0]
            b_tensors[k] = tensors[indx][1]

        # fill powder object with powder data
        powder.set(dict(b_tensors=b_tensors, a_tensors=a_tensors))

        return powder
コード例 #21
0
ファイル: camera_test.py プロジェクト: jinyx728/CS229
    def get_grid_fill_objs(self, size):
        max_n_threads = 40
        n_rows, n_cols = size
        n_cameras = n_rows * n_cols
        # print('n_cameras',n_cameras)
        n_threads = min(n_cameras, max_n_threads)
        cam_path = join(self.sample_dir, 'camera.txt')
        cams = np.loadtxt(cam_path)

        def f(camera_i):
            row_i = camera_i // n_cols
            col_i = camera_i % n_cols
            y = row_i / (n_rows - 1)
            x = col_i / (n_cols - 1)
            camera_pos = (1 - x) * (1 - y) * cams[3] + x * (
                1 - y) * cams[2] + (1 - x) * y * cams[1] + x * y * cams[0]
            self.write_meshlab_camera(
                join(self.keys_dir, 'meshlab_camera_{}.txt'.format(camera_i)),
                camera_pos, np.eye(3))
            self.get_fill_obj(camera_pos,
                              postfix=str(camera_i),
                              frame=camera_i,
                              check=False)

        pool = ProcessPool(nodes=n_threads)
        pool.map(f, range(n_cameras))
コード例 #22
0
def _parallel(ordered: bool, function: Callable, *iterables: Iterable, **kwargs: Any) -> Generator:
    """Returns a generator for a parallel map with a progress bar.

    Arguments:
        ordered(bool): True for an ordered map, false for an unordered map.
        function(Callable): The function to apply to each element of the given Iterables.
        iterables(Tuple[Iterable]): One or more Iterables containing the data to be mapped.

    Returns:
        A generator which will apply the function to each element of the given Iterables
        in parallel in order with a progress bar.
    """

    # Extract num_cpus
    num_cpus = kwargs.pop('num_cpus', None)

    # Determine num_cpus
    if num_cpus is None:
        num_cpus = cpu_count()
    elif type(num_cpus) == float:
        num_cpus = int(round(num_cpus * cpu_count()))

    # Determine length of tqdm (equal to length of shortest iterable)
    length = min(len(iterable) for iterable in iterables if isinstance(iterable, Sized))

    # Create parallel generator
    map_type = 'imap' if ordered else 'uimap'
    pool = Pool(num_cpus)
    map_func = getattr(pool, map_type)

    for item in tqdm(map_func(function, *iterables), total=length, **kwargs):
        yield item

    pool.clear()
コード例 #23
0
 def obs_temp_p(self, dtobj):
     '''
     get observed temperature in amsterdam parallel
     '''
     self.dtobjP = dtobj
     pool = Pool()
     obs = pool.map(self.obs_temp, self.filelist)
     self.obs = [ob for ob in obs if ob is not None]
コード例 #24
0
 def _parallel_final_score(self, smiles: List[str]) -> FinalSummary:
     molecules, valid_indices = self._smiles_to_mols(smiles)
     component_smiles_pairs = [[
         component, molecules, valid_indices, smiles
     ] for component in self.scoring_components]
     pool = ProcessPool(nodes=len(self.scoring_components))
     mapped_pool = pool.map(parallel_run, component_smiles_pairs)
     pool.clear()
     return self._score_summary(mapped_pool, smiles, valid_indices)
コード例 #25
0
ファイル: main1.5.py プロジェクト: xiaofeima1990/project
def para_data_allo_1(Theta, cpu_num, rng, d_struct, Data_struct):
    time.sleep(1)
    pub = Data_struct.pub_info[0, ]

    print(" id: {} , is dealing the auction with {} bidder ".format(
        threading.get_ident(), pub[2]))

    JJ = d_struct["JJ"]

    # number of auctions in the data || maximum length of an auction

    TT, T_end = Data_struct.data_act.shape
    TT = int(TT)
    T_end = int(T_end)
    '''
    
    take the grid generation outsides
    
    '''

    # num of bidders in the auction
    N = int(pub[2])

    # setup the env info structure
    info_flag = pub[3]
    # setup the env info structure

    Env = ENV(N, Theta)

    if info_flag == 0:
        para = Env.Uninform()
    else:
        para = Env.Info_ID()

    [x_signal, w_x] = signal_DGP(para, rng, N, JJ)

    results = []

    func = partial(para_fun, para, info_flag, rng, T_end, int(JJ * N),
                   x_signal, w_x)
    pool = ProcessPool(nodes=cpu_num)

    #    pool = ProcessPoolExecutor(max_workers=cpu_num)

    start = time.time()
    results = pool.map(
        func,
        zip(range(0, TT), Data_struct.data_act, Data_struct.data_state,
            Data_struct.pub_info))

    MoM = np.nanmean(list(results))

    end = time.time()
    print('time expenditure for the auction estimation under N = {}'.format(N))
    print(end - start)

    return MoM
    def runIteration(self, task, pop, fpop, xb, fxb, A, A_f, B, B_f, D, D_f,
                     **dparams):
        r"""Core funciton of GreyWolfOptimizer algorithm.
		Args:
			task (Task): Optimization task.
			pop (numpy.ndarray): Current population.
			fpop (numpy.ndarray): Current populations function/fitness values.
			xb (numpy.ndarray):
			fxb (float):
			A (numpy.ndarray):
			A_f (float):
			B (numpy.ndarray):
			B_f (float):
			D (numpy.ndarray):
			D_f (float):
			**dparams (Dict[str, Any]): Additional arguments.
		Returns:
			Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray, float, Dict[str, Any]]:
				1. New population
				2. New population fitness/function values
				3. Additional arguments:
					* A (): TODO
		"""
        def eval_task(args):
            i, w = args
            A1, C1 = 2 * a * self.rand(task.D) - a, 2 * self.rand(task.D)
            X1 = A - A1 * fabs(C1 * A - w)
            A2, C2 = 2 * a * self.rand(task.D) - a, 2 * self.rand(task.D)
            X2 = B - A2 * fabs(C2 * B - w)
            A3, C3 = 2 * a * self.rand(task.D) - a, 2 * self.rand(task.D)
            X3 = D - A3 * fabs(C3 * D - w)
            pop = task.repair((X1 + X2 + X3) / 3, self.Rand)
            fpop = task.eval(pop[i])
            return i, pop, fpop

        a = 2 - task.Evals * (2 / task.nFES)
        pool = ProcessPool(nodes=self.nodes)
        pool.clear()
        results = pool.map(eval_task, [[i, w] for i, w in enumerate(pop)])

        for i, _pop, _fpop in results:
            pop[i] = _pop
            fpop[i] = _fpop

        for i, f in enumerate(fpop):
            if f < A_f: A, A_f = pop[i].copy(), f
            elif A_f < f < B_f: B, B_f = pop[i].copy(), f
            elif B_f < f < D_f: D, D_f = pop[i].copy(), f
        xb, fxb = self.getBest(A, A_f, xb, fxb)
        return pop, fpop, xb, fxb, {
            'A': A,
            'A_f': A_f,
            'B': B,
            'B_f': B_f,
            'D': D,
            'D_f': D_f
        }
コード例 #27
0
 def run_vt(self):
     cams=self.load_cam()
     def f(cam_i):
         cam_pos=cams[cam_i]
         self.get_fill_obj(cam_pos,'{}'.format(cam_i),cam_i,check=False)
     n_cams=len(cams)
     n_threads=n_cams
     pool=ProcessPool(nodes=n_threads)
     pool.map(f,range(n_cams))
コード例 #28
0
ファイル: asymptotics.py プロジェクト: uwsampl/dtr-prototype
def run_asymptotics(base,
                    ns,
                    heuristic,
                    bound,
                    runtime,
                    releases=True,
                    **kwargs):
    config = {
        'ns': ns,
        'heuristic': str(heuristic),
        'heuristic_features': list(heuristic.FEATURES),
        'memory': str(bound),
        'releases': releases,
        'runtime': runtime.ID,
        'runtime_features': list(runtime.FEATURES),
        'kwargs': kwargs
    }

    p = Pool()

    print('generating asymptotics data for config: {}...'.format(
        json.dumps(config, indent=2)))

    args = []
    for n in ns:
        args.append([n, bound(n), heuristic, runtime, releases, kwargs])

    t = time.time()
    rts = p.map(run, *zip(*args))
    t = time.time() - t
    succ_ns, succ_rts = chop_failures(ns, rts)
    print('  - succeeded between n={} and n={}'.format(succ_ns[0],
                                                       succ_ns[-1]))
    print('  done, took {} seconds.'.format(t))
    results = {
        'layers':
        succ_ns,
        'computes':
        list(map(lambda rt: rt.telemetry.summary['remat_compute'], rts)),
        'had_OOM':
        ns[0] != succ_ns[0],
        'had_thrash':
        ns[-1] != succ_ns[-1]
    }

    date_str = datetime.now().strftime('%Y%m%d-%H%M%S-%f')
    base_mod = ASYMPTOTICS_MOD + '/' + base
    out_file = '{}-{}-{}.json'.format(date_str, heuristic.ID, bound.ID)
    util.ensure_output_path(base_mod)
    out_path = util.get_output_path(base_mod, out_file)
    with open(out_path, 'w') as out_f:
        out_f.write(
            json.dumps({
                'config': config,
                'results': results
            }, indent=2))
    print('-> done, saved to "{}"'.format(out_path))
コード例 #29
0
 def transform(self, X):
     X.columns = X.columns.str.lower()  # columns must be lower case
     pool = ProcessPool(nodes=self.n_jobs)
     self.result = []
     for ind in self.fitted:
         self.result.append(pool.apipe(ind.transform, X))
     self.result = [res.get() for res in self.result]
     res = pd.concat(self.result, axis=1)
     return res
コード例 #30
0
    def sample(self, horizon, act=None, nodes=8):
        act = [None] * len(horizon) if act is None else act
        seeds = [i for i in range(len(horizon))]

        pool = ProcessPool(nodes=nodes)
        res = pool.map(self._sample, horizon, act, seeds)
        pool.clear()

        state, obs = list(map(list, zip(*res)))
        return state, obs
コード例 #31
0
    def fit(self,
            X,
            y,
            trials=5,
            indicators=indicators,
            ranges=ranges,
            tune_series=tune_series,
            tune_params=tune_params,
            tune_column=tune_column):
        self.fitted = []
        X.columns = X.columns.str.lower()  # columns must be lower case

        pool = ProcessPool(nodes=self.n_jobs)

        for low, high in ranges:
            if low <= 1:
                raise ValueError("Range low must be > 1")
            if high >= len(X):
                raise ValueError(
                    f"Range high:{high} must be > length of X:{len(X)}")
            for ind in indicators:
                idx = 0
                if ":" in ind:
                    idx = int(ind.split(":")[1])
                    ind = ind.split(":")[0]
                fn = f"{ind}("
                if ind[0:3] == "tta":
                    usage = eval(f"{ind}.__doc__").split(")")[0].split("(")[1]
                    params = re.sub('[^0-9a-zA-Z_\s]', '', usage).split()
                else:
                    sig = inspect.signature(eval(ind))
                    params = sig.parameters.values()

                for param in params:
                    param = re.split(':|=', str(param))[0].strip()
                    if param == "open_":
                        param = "open"
                    if param == "real":
                        fn += f"X.close, "
                    elif param == "ohlc":
                        fn += f"X, "
                    elif param == "ohlcv":
                        fn += f"X, "
                    elif param in tune_series:
                        fn += f"X.{param}, "
                    elif param in tune_params:
                        fn += f"{param}=trial.suggest_int('{param}', {low}, {high}), "
                fn += ")"
                self.fitted.append(
                    pool.apipe(Optimize(function=fn, n_trials=trials).fit,
                               X,
                               y,
                               idx=idx,
                               verbose=self.verbose))
        self.fitted = [fit.get() for fit in self.fitted]  # Get results of jobs
コード例 #32
0
ファイル: downscale.py プロジェクト: ua-snap/downscale
	def run( self ):
		# from pathos.multiprocessing import Pool
		from pathos.multiprocessing import ProcessPool as Pool
		args = self._interpna_setup( )
		pool = Pool( processes=self.ncpus )
		out = pool.map( self._interpna, args[:400] )
		pool.close()
		lons = self._lonpc
		# stack em and roll-its axis so time is dim0
		dat = np.rollaxis( np.dstack( out ), -1 )
		if self._rotated == True: # rotate it back
			dat, lons = self.rotate( dat, lons, to_pacific=False )
		# place back into a new xarray.Dataset object for further processing
		# function to make a new xarray.Dataset object with the mdata we need?
		# ds = self.ds
		# var = ds[ self.variable ]
		# setattr( var, 'data', dat )
		# self.ds = ds
		print( 'ds interpolated updated into self.ds' )
		return dat
コード例 #33
0
ファイル: batchrunner.py プロジェクト: bangtree/mesa
class BatchRunnerMP(BatchRunner):
    """ Child class of BatchRunner, extended with multiprocessing support. """

    def __init__(self, model_cls, nr_processes=2, **kwargs):
        """ Create a new BatchRunnerMP for a given model with the given
        parameters.

        Args:
            model_cls: The class of model to batch-run.
            nr_processes: the number of separate processes the BatchRunner
                should start, all running in parallel.
            kwargs: the kwargs required for the parent BatchRunner class
        """
        if not pathos_support:
            raise MPSupport
        super().__init__(model_cls, **kwargs)
        self.pool = ProcessPool(nodes=nr_processes)

    def run_all(self):
        """
        Run the model at all parameter combinations and store results,
        overrides run_all from BatchRunner.
        """
        run_count = count()
        total_iterations, all_kwargs, all_param_values = self._make_model_args()

        # register the process pool and init a queue
        job_queue = []
        with tqdm(total_iterations, disable=not self.display_progress) as pbar:
            for i, kwargs in enumerate(all_kwargs):
                param_values = all_param_values[i]
                for _ in range(self.iterations):
                    # make a new process and add it to the queue
                    job_queue.append(self.pool.uimap(self.run_iteration,
                                                     (kwargs,),
                                                     (param_values,),
                                                     (next(run_count),)))
            # empty the queue
            results = []
            for task in job_queue:
                for model_vars, agent_vars in list(task):
                    results.append((model_vars, agent_vars))
                pbar.update()

            # store the results
            for model_vars, agent_vars in results:
                if self.model_reporters:
                    for model_key, model_val in model_vars.items():
                        self.model_vars[model_key] = model_val
                if self.agent_reporters:
                    for agent_key, reports in agent_vars.items():
                        self.agent_vars[agent_key] = reports
コード例 #34
0
def undirect(self,ncores=4):
    '''
    Remove directional links between species by finding the net weight of the jacobian
    
    '''

    dct={}
    specs = self.spec.columns
    iterate = []
    for i in specs:
        for j in specs:
            if i==j: break
            iterate.append(list(set([i,j])))
            
    self = self.jacsp.compute()


    def net(d):
        ret = []
        for n in d:
            total =[]
            try: total.append(self['%s->%s'%(n[0],n[1])])
            except:None
            try: total.append(-self['%s->%s'%(n[1],n[0])])
            except:None

            if len(total) > 0 :
                ret.append(['->'.join(n), sum(total)])
        return ret

    dct = ProcessPool(nodes=ncores).amap(net,np.array_split(iterate,ncores))

    while not dct.ready():
         time.sleep(5); print(".")

    dct = dct.get()

    return dict([i for j in dct for i in j])
コード例 #35
0
ファイル: batchrunner.py プロジェクト: bangtree/mesa
    def __init__(self, model_cls, nr_processes=2, **kwargs):
        """ Create a new BatchRunnerMP for a given model with the given
        parameters.

        Args:
            model_cls: The class of model to batch-run.
            nr_processes: the number of separate processes the BatchRunner
                should start, all running in parallel.
            kwargs: the kwargs required for the parent BatchRunner class
        """
        if not pathos_support:
            raise MPSupport
        super().__init__(model_cls, **kwargs)
        self.pool = ProcessPool(nodes=nr_processes)
コード例 #36
0
# from pathos.multiprocessing import ProcessingPool as Pool
# import pathos.multiprocessing as mp

from pathos.multiprocessing import ProcessPool as Pool
from ActiveShapeModelsBetter import ASMB, Point, Shape
import dill


if __name__ == "__main__":
    asm = ASMB([0, 1], 10)
    asm.addShape(Shape([Point(100, 200), Point(200, 440), Point(400, 300)]))
    p = Pool()
    p.map(Point.rotate, asm.allShapes, [[-1, 1], [1, -1]])
コード例 #37
0
ファイル: fftconv.py プロジェクト: bjd2385/fftconvolve
    def spaceConvNumbaThreadedOuter2(self):
        """ `Block` threading example """

        def divider(arr_dims, coreNum=1):
            """ Get a bunch of iterable ranges; 
            Example input: [[[0, 24], [15, 25]]]"""
            if (coreNum == 1):
                return arr_dims

            elif (coreNum < 1):
                raise ValueError(\
              'partitioner expected a positive number of cores, got %d'\
                            % coreNum
                )

            elif (coreNum % 2):
                raise ValueError(\
              'partitioner expected an even number of cores, got %d'\
                            % coreNum
                )
            
            total = []

            # Split each coordinate in arr_dims in _half_
            for arr_dim in arr_dims:
                dY = arr_dim[0][1] - arr_dim[0][0]
                dX = arr_dim[1][1] - arr_dim[1][0]
                
                if ((coreNum,)*2 > (dY, dX)):
                    coreNum = max(dY, dX)
                    coreNum -= 1 if (coreNum % 2 and coreNum > 1) else 0

                new_c1, new_c2, = [], []

                if (dY >= dX):
                    # Subimage height is greater than its width
                    half = dY // 2
                    new_c1.append([arr_dim[0][0], arr_dim[0][0] + half])
                    new_c1.append(arr_dim[1])
                    
                    new_c2.append([arr_dim[0][0] + half, arr_dim[0][1]])
                    new_c2.append(arr_dim[1])

                else:
                    # Subimage width is greater than its height
                    half = dX // 2
                    new_c1.append(arr_dim[0])
                    new_c1.append([arr_dim[1][0], half])

                    new_c2.append(arr_dim[0])
                    new_c2.append([arr_dim[1][0] + half, arr_dim[1][1]])

                total.append(new_c1), total.append(new_c2)

            # If the number of cores is 1, we get back the total; Else,
            # we split each in total, etc.; it's turtles all the way down
            return divider(total, coreNum // 2)

        def numer(start, finish):
            count = start
            iteration = 0
            while count < finish:
                yield iteration, count
                iteration += 1
                count += 1

        @checkarrays
        @jit
        def dotJit(subarray, kernel):
            total = 0.0
            for i in xrange(subarray.shape[0]):
                for j in xrange(subarray.shape[1]):
                    total += subarray[i][j] * kernel[i][j]
            return total

        def outer(subset):
            a, b, = subset
            ai, bi, = map(sub, *reversed(zip(*subset)))
            temp = np.zeros((ai, bi))

            for ind, i in numer(*a):
                for jnd, j in numer(*b):
                    temp[ind, jnd] = dotJit(\
                        self.array[i:i+self.__rangeKX_,
                                   j:j+self.__rangeKY_]
                        , self.kernel
                    )
            
            return temp, a, b

        # ProcessPool auto-detects processors, but my function above
        # only accepts an even number; I'm still working on it.
        # Otherwise I wouldn't mess with cpu_count()
        cores = cpu_count()
        cores -= 1 if (cores % 2 == 1 and cores > 1) else 0

        # Get partitioning indices and the usable number of cores
        shape = [[[0, self.__rangeX_ - 1], [0, self.__rangeY_ - 1]]]
        partitions = divider(shape, cores)
        
        # Map partitions to threads and process
        pool = ProcessPool(nodes=cores)
        results = pool.map(outer, partitions)
        #pool.close()
        #pool.join()
        
        for ind, res in enumerate(results):
            X, Y, = results[ind][1:]
            self.__arr_[slice(*X), slice(*Y)] += results[ind][0]

        return self.__arr_