コード例 #1
0
def test_data_types():
    data = {
        "a": [1, 2, 3],
        "b": [1.0, 2.0, 3.0],
        "c": np.asarray([1, 2, 3], dtype=np.float32),
        "d": [True, False, True],
        "e": ["foo", "bar", "baz"],
        "f": C([1, 2, 3]),
        "g": C(["foo", "bar", "baz"]),
        "h": np.array(["foo", 1, (1, "hi")], dtype=object),
    }
    t("~ 0 + a", data, 0, True, [[1], [2], [3]], ["a"])
    t("~ 0 + b", data, 0, True, [[1], [2], [3]], ["b"])
    t("~ 0 + c", data, 0, True, [[1], [2], [3]], ["c"])
    t("~ 0 + d", data, 0, True, [[0, 1], [1, 0], [0, 1]],
      ["d[False]", "d[True]"])
    t("~ 0 + e", data, 0, True, [[0, 0, 1], [1, 0, 0], [0, 1, 0]],
      ["e[bar]", "e[baz]", "e[foo]"])
    t("~ 0 + f", data, 0, True, [[1, 0, 0], [0, 1, 0], [0, 0, 1]],
      ["f[1]", "f[2]", "f[3]"])
    t("~ 0 + g", data, 0, True, [[0, 0, 1], [1, 0, 0], [0, 1, 0]],
      ["g[bar]", "g[baz]", "g[foo]"])
    # This depends on Python's sorting behavior:
    t("~ 0 + h", data, 0, True, [[0, 1, 0], [1, 0, 0], [0, 0, 1]],
      ["h[1]", "h[foo]", "h[(1, 'hi')]"])
コード例 #2
0
def test_data_mismatch():
    test_cases_twoway = [
        # Data type mismatch
        ([1, 2, 3], [True, False, True]),
        (C(["a", "b", "c"], levels=["c", "b", "a"]),
         C(["a", "b", "c"], levels=["a", "b", "c"])),
        # column number mismatches
        ([[1], [2], [3]], [[1, 1], [2, 2], [3, 3]]),
        ([[1, 1, 1], [2, 2, 2], [3, 3, 3]], [[1, 1], [2, 2], [3, 3]]),
        ]
    test_cases_oneway = [
        ([1, 2, 3], ["a", "b", "c"]),
        ([1, 2, 3], C(["a", "b", "c"])),
        ([True, False, True], C(["a", "b", "c"])),
        ([True, False, True], ["a", "b", "c"]),
        ]
    setup_predict_only = [
        # This is not an error if both are fed in during make_builders, but it
        # is an error to pass one to make_builders and the other to
        # make_matrices.
        (["a", "b", "c"], ["a", "b", "d"]),
        ]
    termlist = make_termlist(["x"])
    def t_incremental(data1, data2):
        def iter_maker():
            yield {"x": data1}
            yield {"x": data2}
        try:
            builders = design_matrix_builders([termlist], iter_maker, 0)
            build_design_matrices(builders, {"x": data1})
            build_design_matrices(builders, {"x": data2})
        except PatsyError:
            pass
        else:
            raise AssertionError
    def t_setup_predict(data1, data2):
        def iter_maker():
            yield {"x": data1}
        builders = design_matrix_builders([termlist], iter_maker, 0)
        assert_raises(PatsyError,
                      build_design_matrices, builders, {"x": data2})
    for (a, b) in test_cases_twoway:
        t_incremental(a, b)
        t_incremental(b, a)
        t_setup_predict(a, b)
        t_setup_predict(b, a)
    for (a, b) in test_cases_oneway:
        t_incremental(a, b)
        t_setup_predict(a, b)
    for (a, b) in setup_predict_only:
        t_setup_predict(a, b)
        t_setup_predict(b, a)

    assert_raises(PatsyError,
                  make_matrix, {"x": [1, 2, 3], "y": [1, 2, 3, 4]},
                  2, [["x"], ["y"]])
コード例 #3
0
def test_contrast():
    from patsy.contrasts import ContrastMatrix, Sum
    values = ["a1", "a3", "a1", "a2"]

    # No intercept in model, full-rank coding of 'a'
    m = make_matrix({"a": C(values)},
                    3, [["a"]],
                    column_names=["a[a1]", "a[a2]", "a[a3]"])

    assert np.allclose(m, [[1, 0, 0], [0, 0, 1], [1, 0, 0], [0, 1, 0]])

    for s in (Sum, Sum()):
        m = make_matrix({"a": C(values, s)},
                        3, [["a"]],
                        column_names=["a[mean]", "a[S.a1]", "a[S.a2]"])
        # Output from R
        assert np.allclose(m, [[1, 1, 0], [1, -1, -1], [1, 1, 0], [1, 0, 1]])

    m = make_matrix({"a": C(values, Sum(omit=0))},
                    3, [["a"]],
                    column_names=["a[mean]", "a[S.a2]", "a[S.a3]"])
    # Output from R
    assert np.allclose(m, [[1, -1, -1], [1, 0, 1], [1, -1, -1], [1, 1, 0]])

    # Intercept in model, non-full-rank coding of 'a'
    m = make_matrix({"a": C(values)},
                    3, [[], ["a"]],
                    column_names=["Intercept", "a[T.a2]", "a[T.a3]"])

    assert np.allclose(m, [[1, 0, 0], [1, 0, 1], [1, 0, 0], [1, 1, 0]])

    for s in (Sum, Sum()):
        m = make_matrix({"a": C(values, s)},
                        3, [[], ["a"]],
                        column_names=["Intercept", "a[S.a1]", "a[S.a2]"])
        # Output from R
        assert np.allclose(m, [[1, 1, 0], [1, -1, -1], [1, 1, 0], [1, 0, 1]])

    m = make_matrix({"a": C(values, Sum(omit=0))},
                    3, [[], ["a"]],
                    column_names=["Intercept", "a[S.a2]", "a[S.a3]"])
    # Output from R
    assert np.allclose(m, [[1, -1, -1], [1, 0, 1], [1, -1, -1], [1, 1, 0]])

    # Weird ad hoc less-than-full-rank coding of 'a'
    m = make_matrix({"a": C(values, [[7, 12], [2, 13], [8, -1]])},
                    2, [["a"]],
                    column_names=["a[custom0]", "a[custom1]"])
    assert np.allclose(m, [[7, 12], [8, -1], [7, 12], [2, 13]])

    m = make_matrix(
        {
            "a":
            C(values,
              ContrastMatrix([[7, 12], [2, 13], [8, -1]], ["[foo]", "[bar]"]))
        },
        2, [["a"]],
        column_names=["a[foo]", "a[bar]"])
    assert np.allclose(m, [[7, 12], [8, -1], [7, 12], [2, 13]])
コード例 #4
0
def test__eval_factor_categorical():
    from pytest import raises
    from patsy.categorical import C
    naa = NAAction()
    f = _MockFactor()
    fi1 = FactorInfo(f,
                     "categorical", {},
                     num_columns=None,
                     categories=("a", "b"))
    assert fi1.factor is f
    cat1, _ = _eval_factor(fi1, {"mock": ["b", "a", "b"]}, naa)
    assert cat1.shape == (3, )
    assert np.all(cat1 == [1, 0, 1])
    raises(PatsyError, _eval_factor, fi1, {"mock": ["c"]}, naa)
    raises(PatsyError, _eval_factor, fi1, {"mock": C(["a", "c"])}, naa)
    raises(PatsyError, _eval_factor, fi1,
           {"mock": C(["a", "b"], levels=["b", "a"])}, naa)
    raises(PatsyError, _eval_factor, fi1, {"mock": [1, 0, 1]}, naa)
    bad_cat = np.asarray(["b", "a", "a", "b"])
    bad_cat.resize((2, 2))
    raises(PatsyError, _eval_factor, fi1, {"mock": bad_cat}, naa)

    cat1_NA, is_NA = _eval_factor(fi1, {"mock": ["a", None, "b"]},
                                  NAAction(NA_types=["None"]))
    assert np.array_equal(is_NA, [False, True, False])
    assert np.array_equal(cat1_NA, [0, -1, 1])
    raises(PatsyError, _eval_factor, fi1, {"mock": ["a", None, "b"]},
           NAAction(NA_types=[]))

    fi2 = FactorInfo(_MockFactor(),
                     "categorical", {},
                     num_columns=None,
                     categories=[False, True])
    cat2, _ = _eval_factor(fi2, {"mock": [True, False, False, True]}, naa)
    assert cat2.shape == (4, )
    assert np.all(cat2 == [1, 0, 0, 1])

    if have_pandas:
        s = pandas.Series(["b", "a"], index=[10, 20])
        cat_s, _ = _eval_factor(fi1, {"mock": s}, naa)
        assert isinstance(cat_s, pandas.Series)
        assert np.array_equal(cat_s, [1, 0])
        assert np.array_equal(cat_s.index, [10, 20])
        sbool = pandas.Series([True, False], index=[11, 21])
        cat_sbool, _ = _eval_factor(fi2, {"mock": sbool}, naa)
        assert isinstance(cat_sbool, pandas.Series)
        assert np.array_equal(cat_sbool, [1, 0])
        assert np.array_equal(cat_sbool.index, [11, 21])
コード例 #5
0
def test_categorical():
    data = balanced(a=2, b=2)
    # There are more exhaustive tests for all the different coding options in
    # test_build; let's just make sure that C() and stuff works.
    t("~ C(a)", data, 0, True, [[1, 0], [1, 0], [1, 1], [1, 1]],
      ["Intercept", "C(a)[T.a2]"])
    t("~ C(a, levels=['a2', 'a1'])", data, 0, True,
      [[1, 1], [1, 1], [1, 0], [1, 0]],
      ["Intercept", "C(a, levels=['a2', 'a1'])[T.a1]"])
    t("~ C(a, Treatment(reference=-1))", data, 0, True,
      [[1, 1], [1, 1], [1, 0], [1, 0]],
      ["Intercept", "C(a, Treatment(reference=-1))[T.a1]"])

    # Different interactions
    t("a*b", data, 0, True,
      [[1, 0, 0, 0], [1, 0, 1, 0], [1, 1, 0, 0], [1, 1, 1, 1]],
      ["Intercept", "a[T.a2]", "b[T.b2]", "a[T.a2]:b[T.b2]"])
    t("0 + a:b", data, 0, True,
      [[1, 0, 0, 0], [0, 0, 1, 0], [0, 1, 0, 0], [0, 0, 0, 1]],
      ["a[a1]:b[b1]", "a[a2]:b[b1]", "a[a1]:b[b2]", "a[a2]:b[b2]"])
    t("1 + a + a:b", data, 0, True,
      [[1, 0, 0, 0], [1, 0, 1, 0], [1, 1, 0, 0], [1, 1, 0, 1]],
      ["Intercept", "a[T.a2]", "a[a1]:b[T.b2]", "a[a2]:b[T.b2]"])

    # Changing contrast with C()
    data["a"] = C(data["a"], Helmert)
    t("a", data, 0, True, [[1, -1], [1, -1], [1, 1], [1, 1]],
      ["Intercept", "a[H.a2]"])
    t("C(a, Treatment)", data, 0, True, [[1, 0], [1, 0], [1, 1], [1, 1]],
      ["Intercept", "C(a, Treatment)[T.a2]"])
    # That didn't affect the original object
    t("a", data, 0, True, [[1, -1], [1, -1], [1, 1], [1, 1]],
      ["Intercept", "a[H.a2]"])
コード例 #6
0
ファイル: build.py プロジェクト: joaonatali/patsy
def test__CatFactorEvaluator():
    from nose.tools import assert_raises
    from patsy.categorical import C
    naa = NAAction()
    f = _MockFactor()
    cf1 = _CatFactorEvaluator(f, {}, ["a", "b"])
    assert cf1.factor is f
    cat1, _ = cf1.eval({"mock": ["b", "a", "b"]}, naa)
    assert cat1.shape == (3, )
    assert np.all(cat1 == [1, 0, 1])
    assert_raises(PatsyError, cf1.eval, {"mock": ["c"]}, naa)
    assert_raises(PatsyError, cf1.eval, {"mock": C(["a", "c"])}, naa)
    assert_raises(PatsyError, cf1.eval,
                  {"mock": C(["a", "b"], levels=["b", "a"])}, naa)
    assert_raises(PatsyError, cf1.eval, {"mock": [1, 0, 1]}, naa)
    bad_cat = np.asarray(["b", "a", "a", "b"])
    bad_cat.resize((2, 2))
    assert_raises(PatsyError, cf1.eval, {"mock": bad_cat}, naa)

    cat1_NA, is_NA = cf1.eval({"mock": ["a", None, "b"]},
                              NAAction(NA_types=["None"]))
    assert np.array_equal(is_NA, [False, True, False])
    assert np.array_equal(cat1_NA, [0, -1, 1])
    assert_raises(PatsyError, cf1.eval, {"mock": ["a", None, "b"]},
                  NAAction(NA_types=[]))

    cf2 = _CatFactorEvaluator(_MockFactor(), {}, [False, True])
    cat2, _ = cf2.eval({"mock": [True, False, False, True]}, naa)
    assert cat2.shape == (4, )
    assert np.all(cat2 == [1, 0, 0, 1])

    if have_pandas:
        s = pandas.Series(["b", "a"], index=[10, 20])
        cat_s, _ = cf1.eval({"mock": s}, naa)
        assert isinstance(cat_s, pandas.Series)
        assert np.array_equal(cat_s, [1, 0])
        assert np.array_equal(cat_s.index, [10, 20])
        sbool = pandas.Series([True, False], index=[11, 21])
        cat_sbool, _ = cf2.eval({"mock": sbool}, naa)
        assert isinstance(cat_sbool, pandas.Series)
        assert np.array_equal(cat_sbool, [1, 0])
        assert np.array_equal(cat_sbool.index, [11, 21])
コード例 #7
0
def test_categorical():
    data_strings = {"a": ["a1", "a2", "a1"]}
    data_categ = {"a": C(["a2", "a1", "a2"])}
    datas = [data_strings, data_categ]
    if have_pandas_categorical:
        data_pandas = {"a": pandas.Categorical.from_array(["a1", "a2", "a2"])}
        datas.append(data_pandas)
    def t(data1, data2):
        def iter_maker():
            yield data1
        builders = design_matrix_builders([make_termlist(["a"])],
                                          iter_maker)
        build_design_matrices(builders, data2)
    for data1 in datas:
        for data2 in datas:
            t(data1, data2)
コード例 #8
0
ファイル: build.py プロジェクト: MarceloDL-A/metodos_python
def test__examine_factor_types():
    from patsy.categorical import C
    class MockFactor(object):
        def __init__(self):
            # You should check this using 'is', not '=='
            from patsy.origin import Origin
            self.origin = Origin("MOCK", 1, 2)

        def eval(self, state, data):
            return state[data]

        def name(self):
            return "MOCK MOCK"

    # This hacky class can only be iterated over once, but it keeps track of
    # how far it got.
    class DataIterMaker(object):
        def __init__(self):
            self.i = -1

        def __call__(self):
            return self

        def __iter__(self):
            return self

        def next(self):
            self.i += 1
            if self.i > 1:
                raise StopIteration
            return self.i
        __next__ = next

    num_1dim = MockFactor()
    num_1col = MockFactor()
    num_4col = MockFactor()
    categ_1col = MockFactor()
    bool_1col = MockFactor()
    string_1col = MockFactor()
    object_1col = MockFactor()
    object_levels = (object(), object(), object())
    factor_states = {
        num_1dim: ([1, 2, 3], [4, 5, 6]),
        num_1col: ([[1], [2], [3]], [[4], [5], [6]]),
        num_4col: (np.zeros((3, 4)), np.ones((3, 4))),
        categ_1col: (C(["a", "b", "c"], levels=("a", "b", "c"),
                       contrast="MOCK CONTRAST"),
                     C(["c", "b", "a"], levels=("a", "b", "c"),
                       contrast="MOCK CONTRAST")),
        bool_1col: ([True, True, False], [False, True, True]),
        # It has to read through all the data to see all the possible levels:
        string_1col: (["a", "a", "a"], ["c", "b", "a"]),
        object_1col: ([object_levels[0]] * 3, object_levels),
        }

    it = DataIterMaker()
    (num_column_counts, cat_levels_contrasts,
     ) = _examine_factor_types(factor_states.keys(), factor_states, it,
                               NAAction())
    assert it.i == 2
    iterations = 0
    assert num_column_counts == {num_1dim: 1, num_1col: 1, num_4col: 4}
    assert cat_levels_contrasts == {
        categ_1col: (("a", "b", "c"), "MOCK CONTRAST"),
        bool_1col: ((False, True), None),
        string_1col: (("a", "b", "c"), None),
        object_1col: (tuple(sorted(object_levels, key=id)), None),
        }

    # Check that it doesn't read through all the data if that's not necessary:
    it = DataIterMaker()
    no_read_necessary = [num_1dim, num_1col, num_4col, categ_1col, bool_1col]
    (num_column_counts, cat_levels_contrasts,
     ) = _examine_factor_types(no_read_necessary, factor_states, it,
                               NAAction())
    assert it.i == 0
    assert num_column_counts == {num_1dim: 1, num_1col: 1, num_4col: 4}
    assert cat_levels_contrasts == {
        categ_1col: (("a", "b", "c"), "MOCK CONTRAST"),
        bool_1col: ((False, True), None),
        }

    # Illegal inputs:
    bool_3col = MockFactor()
    num_3dim = MockFactor()
    # no such thing as a multi-dimensional Categorical
    # categ_3dim = MockFactor()
    string_3col = MockFactor()
    object_3col = MockFactor()
    illegal_factor_states = {
        num_3dim: (np.zeros((3, 3, 3)), np.ones((3, 3, 3))),
        string_3col: ([["a", "b", "c"]], [["b", "c", "a"]]),
        object_3col: ([[[object()]]], [[[object()]]]),
        }
    import pytest
    for illegal_factor in illegal_factor_states:
        it = DataIterMaker()
        try:
            _examine_factor_types([illegal_factor], illegal_factor_states, it,
                                  NAAction())
        except PatsyError as e:
            assert e.origin is illegal_factor.origin
        else:
            assert False
コード例 #9
0
def test_categorical_to_int():
    s = pd.Series(["a", "b", "c"], index=[10, 20, 30])
    c_pandas = categorical_to_int(s, ("a", "b", "c"), NAAction())
    assert np.all(c_pandas == [0, 1, 2])
    assert np.all(c_pandas.index == [10, 20, 30])
    # Input must be 1-dimensional
    pytest.raises(PatsyError,
                  categorical_to_int,
                  pd.DataFrame({10: s}), ("a", "b", "c"), NAAction())

    cat = pd.Categorical([1, 0, -1], ("a", "b"))
    conv = categorical_to_int(cat, ("a", "b"), NAAction())
    assert np.all(conv == [1, 0, -1])
    # Trust pandas NA marking
    cat2 = pd.Categorical([1, 0, -1], ("a", "None"))
    conv2 = categorical_to_int(cat, ("a", "b"), NAAction(NA_types=["None"]))
    assert np.all(conv2 == [1, 0, -1])
    # But levels must match
    pytest.raises(PatsyError,
                  categorical_to_int,
                  pd.Categorical([1, 0], ("a", "b")),
                  ("a", "c"),
                  NAAction())
    pytest.raises(PatsyError,
                  categorical_to_int,
                  pd.Categorical([1, 0], ("a", "b")),
                  ("b", "a"),
                  NAAction())

    def t(data, levels, expected, NA_action=NAAction()):
        got = categorical_to_int(data, levels, NA_action)
        assert np.array_equal(got, expected)

    t(["a", "b", "a"], ("a", "b"), [0, 1, 0])
    t(np.asarray(["a", "b", "a"]), ("a", "b"), [0, 1, 0])
    t(np.asarray(["a", "b", "a"], dtype=object), ("a", "b"), [0, 1, 0])
    t([0, 1, 2], (1, 2, 0), [2, 0, 1])
    t(np.asarray([0, 1, 2]), (1, 2, 0), [2, 0, 1])
    t(np.asarray([0, 1, 2], dtype=float), (1, 2, 0), [2, 0, 1])
    t(np.asarray([0, 1, 2], dtype=object), (1, 2, 0), [2, 0, 1])
    t(["a", "b", "a"], ("a", "d", "z", "b"), [0, 3, 0])
    t([("a", 1), ("b", 0), ("a", 1)], (("a", 1), ("b", 0)), [0, 1, 0])

    pytest.raises(PatsyError, categorical_to_int,
                  ["a", "b", "a"], ("a", "c"), NAAction())

    t(C(["a", "b", "a"]), ("a", "b"), [0, 1, 0])
    t(C(["a", "b", "a"]), ("b", "a"), [1, 0, 1])
    t(C(["a", "b", "a"], levels=["b", "a"]), ("b", "a"), [1, 0, 1])
    # Mismatch between C() levels and expected levels
    pytest.raises(PatsyError, categorical_to_int,
                  C(["a", "b", "a"], levels=["a", "b"]),
                  ("b", "a"), NAAction())

    # ndim == 2 is disallowed
    pytest.raises(PatsyError, categorical_to_int,
                  np.asarray([["a", "b"], ["b", "a"]]),
                  ("a", "b"), NAAction())
    # ndim == 0 is disallowed likewise
    pytest.raises(PatsyError, categorical_to_int,
                  "a",
                  ("a", "b"), NAAction())

    # levels must be hashable
    pytest.raises(PatsyError, categorical_to_int,
                  ["a", "b"], ("a", "b", {}), NAAction())
    pytest.raises(PatsyError, categorical_to_int,
                  ["a", "b", {}], ("a", "b"), NAAction())

    t(["b", None, np.nan, "a"], ("a", "b"), [1, -1, -1, 0],
      NAAction(NA_types=["None", "NaN"]))
    t(["b", None, np.nan, "a"], ("a", "b", None), [1, -1, -1, 0],
      NAAction(NA_types=["None", "NaN"]))
    t(["b", None, np.nan, "a"], ("a", "b", None), [1, 2, -1, 0],
      NAAction(NA_types=["NaN"]))

    # Smoke test for the branch that formats the ellipsized list of levels in
    # the error message:
    pytest.raises(PatsyError, categorical_to_int,
                  ["a", "b", "q"],
                  ("a", "b", "c", "d", "e", "f", "g", "h"),
                  NAAction())
コード例 #10
0
def test_CategoricalSniffer():
    patch_patsy()

    from patsy.categorical import CategoricalSniffer

    def t(NA_types, datas, exp_finish_fast, exp_levels, exp_contrast=None):
        sniffer = CategoricalSniffer(NAAction(NA_types=NA_types))
        for data in datas:
            done = sniffer.sniff(data)
            if done:
                assert exp_finish_fast
                break
            else:
                assert not exp_finish_fast
        assert sniffer.levels_contrast() == (exp_levels, exp_contrast)

    t([], [pd.Categorical.from_array([1, 2, None])],
      True, (1, 2))
    # check order preservation
    t([], [pd.Categorical([1, 0], ["a", "b"])],
      True, ("a", "b"))
    t([], [pd.Categorical([1, 0], ["b", "a"])],
      True, ("b", "a"))
    # check that if someone sticks a .contrast field onto a Categorical
    # object, we pick it up:
    c = pd.Categorical.from_array(["a", "b"])
    c.contrast = "CONTRAST"
    t([], [c], True, ("a", "b"), "CONTRAST")

    t([], [C([1, 2]), C([3, 2])], False, (1, 2, 3))
    # check order preservation
    t([], [C([1, 2], levels=[1, 2, 3]), C([4, 2])], True, (1, 2, 3))
    t([], [C([1, 2], levels=[3, 2, 1]), C([4, 2])], True, (3, 2, 1))

    # do some actual sniffing with NAs in
    t(["None", "NaN"], [C([1, np.nan]), C([10, None])],
      False, (1, 10))
    # But 'None' can be a type if we don't make it represent NA:
    sniffer = CategoricalSniffer(NAAction(NA_types=["NaN"]))
    sniffer.sniff(C([1, np.nan, None]))
    # The level order here is different on py2 and py3 :-( Because there's no
    # consistent way to sort mixed-type values on both py2 and py3. Honestly
    # people probably shouldn't use this, but I don't know how to give a
    # sensible error.
    levels, _ = sniffer.levels_contrast()
    assert set(levels) == set([None, 1])

    # bool special case
    t(["None", "NaN"], [C([True, np.nan, None])],
      True, (False, True))
    t([], [C([10, 20]), C([False]), C([30, 40])],
      False, (False, True, 10, 20, 30, 40))

    # check tuples too
    t(["None", "NaN"], [C([("b", 2), None, ("a", 1), np.nan, ("c", None)])],
      False, (("a", 1), ("b", 2), ("c", None)))

    # contrasts
    t([], [C([10, 20], contrast="FOO")], False, (10, 20), "FOO")

    # unhashable level error:
    sniffer = CategoricalSniffer(NAAction())
    pytest.raises(PatsyError, sniffer.sniff, [{}])
コード例 #11
0
ファイル: user_util.py プロジェクト: joaonatali/patsy
 def eval(self, memorize_state, data):
     value = data[self._varname]
     if self._force_categorical:
         value = C(value, contrast=self._contrast, levels=self._levels)
     return value