コード例 #1
0
def compute_sentiment(tweets_df):
    tweets_df["polarity"] = tweets_df["clean_tweets"].apply(
        lambda x: sentiment(x)[0])
    tweets_df["subjectivity"] = tweets_df["clean_tweets"].apply(
        lambda x: sentiment(x)[1])

    return tweets_df
コード例 #2
0
def calculate_sentiment(row):
    if pypath not in sys.path:
        sys.path.insert(1, pypath)
    from pattern.text.nl import sentiment
    entry = row.asDict()
    entry['description_score'], entry['text_score'] = sentiment(
        entry['description']), sentiment(entry['text'])
    return entry
コード例 #3
0
ファイル: sentiana.py プロジェクト: ErwinKomen/RU-ntk
    def get_analysis(self, sSent):
        """Return the sentiment-analysis of one sentence"""

        try:
            score = sentiment(sSent)
            return score
        except:
            # act upon error
            self.errHandle.DoError("SentiAna/get_analysis")
            return None
コード例 #4
0
def getEntities(cleanSentence, tfidf, max):
    relevantWords = {}
    counter = 0
    x = pl.sentiment(cleanSentence).assessments
    listSent = []
    for x1 in x:
        w, a, b, c = x1
        for p in w:
            listSent.append(p)
    for w in sorted(tfidf, key=tfidf.get, reverse=True):
        if w not in listSent and 2 < len(w) < 25:
            relevantWords[w] = ([], [], tfidf[w])
            counter += 1
    return relevantWords
コード例 #5
0
def getSentiments(max_val_tf, relevantWords, text):
    sentiment_count = 0
    for sentence in text:  #passing each sentence the number of times a sentiment has occurred. do this before.
        sentiments_in_sentence = {}
        sentiments_in_sentence_list = []
        for sentiment in pl.sentiment(sentence).assessments:
            sentiment_words, pol, obj, x = sentiment
            # only add sentiments with a bit of flavor
            if abs(pol) + abs(obj) > 0.1:  # interestingness
                sentiments_in_sentence[" ".join(
                    sentiment_words)] = sentiment  # appending a tuple
                # assumption: if the sentiment is longer than 1 item,
                #  the head of the first item will be the second item, etc.
                #  This assumption is not always correct (case of conjunction)
                # TODO: fix conjunction case
                sentiments_in_sentence_list.append(sentiment_words[0])
                sentiment_count += 1
        if sentiments_in_sentence:  # if there are interesting sentiments in the sentence, we want to do a recursion to match them with an entity/subject
            i, flag = 0, 0
            for chunk in nlp(
                    sentence
            ):  # we are going through the nlp (spacy) tagged sentence
                if chunk.text == 'niet':  # we found a negation
                    flag = 1
                if chunk.text in sentiments_in_sentence_list and chunk.dep_ not in [
                        'case', 'mark', 'advcl'
                ] and chunk.pos_ not in ["VERB"]:
                    sentiment_chunk = get_sentiments_from_text_chunk(
                        sentiments_in_sentence, chunk.text)
                    recursion_path_list = recurse_to_find_entity(
                        chunk, 0, 0, 0, 0, [])
                    missed_negation = find_missed_negation(
                        i, sentiment_chunk[0])
                    context_fragment = missed_negation + sentiment_chunk[0]
                    if 'naar' not in sentiment_chunk[
                            0]:  # hand-filtering out "naar", which keeps being classified as a sentiment
                        word = ""
                        for item in recursion_path_list:
                            if item.isupper():
                                word = item.lower()
                                if word not in context_fragment:  # the word can't be in "context_fragment" already, that's how you get "ramp ramp chernobyl"
                                    context_fragment.append(word)
                        if word != "":  # if we found at least one potential noun to be the entity/subject
                            relevantWords = attach_direct_list(
                                relevantWords, recursion_path_list,
                                context_fragment, word, sentiment_chunk)
                if flag == 1:  # for the missed_negation
                    i += 1
    #print("SENTIMENT COUNT: ", sentiment_count)
    return relevantWords
コード例 #6
0
 def transform_text(text):
     from pattern.text.nl import sentiment
     polarity, subjectivity = sentiment(text)
     return numpy.array([polarity, subjectivity])