コード例 #1
0
    def setUp(self):
        cNode = Node.BayesNode(0, 2, name="cloudy")
        sNode = Node.BayesNode(1, 2, name="sprinkler")
        rNode = Node.BayesNode(2, 2, name="rain")
        wNode = Node.BayesNode(3, 2, name="wetgrass")

        #cloudy
        cNode.add_child(sNode)
        cNode.add_child(rNode)

        #sprinkler
        sNode.add_parent(cNode)
        sNode.add_child(wNode)

        #rain
        rNode.add_parent(cNode)
        rNode.add_child(wNode)

        #wetgrass
        wNode.add_parent(sNode)
        wNode.add_parent(rNode)

        self.nodes = [cNode, sNode, rNode, wNode]

        #create distributions
        #cloudy distribution
        cDistribution = Distribution.DiscreteDistribution(cNode)
        index = cDistribution.generate_index([], [])
        cDistribution[index] = 0.5
        cNode.set_dist(cDistribution)

        #sprinkler
        dist = zeros([cNode.size(), sNode.size()], type=Float32)
        dist[0, ] = 0.5
        dist[1, ] = [0.9, 0.1]
        sDistribution = Distribution.ConditionalDiscreteDistribution(
            nodes=[cNode, sNode], table=dist)
        sNode.set_dist(sDistribution)
        #rain
        dist = zeros([cNode.size(), rNode.size()], type=Float32)
        dist[0, ] = [0.8, 0.2]
        dist[1, ] = [0.2, 0.8]
        rDistribution = Distribution.ConditionalDiscreteDistribution(
            nodes=[cNode, rNode], table=dist)
        rNode.set_dist(rDistribution)
        #wetgrass
        dist = zeros([sNode.size(), rNode.size(), wNode.size()], type=Float32)
        dist[0, 0, ] = [1.0, 0.0]
        dist[1, 0, ] = [0.1, 0.9]
        dist[0, 1, ] = [0.1, 0.9]
        dist[1, 1, ] = [0.01, 0.99]
        wgDistribution = Distribution.ConditionalDiscreteDistribution(
            nodes=[sNode, rNode, wNode], table=dist)
        wNode.set_dist(wgDistribution)
        #create bayes net
        self.bnet = Graph.BayesNet(self.nodes)
        self.engine = Inference.InferenceEngine(self.bnet)
コード例 #2
0
ファイル: NodeJT.py プロジェクト: semolarudy/inferenceAI
 def __init__(self, name, variables):
     self.name = name
     self.variables = set(variables)
     self.potential = Distribution.Potential(self.variables)
     self.visited = False
     self.neighbors_separator = set()
     self.num_var = len(self.variables)
コード例 #3
0
 def setUp(self):
     cNode = Node.BayesNode(0, 2, index=0, name="cloudy")
     sNode = Node.BayesNode(1, 2, index=1, name="sprinkler")
     rNode = Node.BayesNode(2, 2, index=2, name="rain")
     wNode = Node.BayesNode(3, 2, index=3, name="wetgrass")
     self.nodes = [cNode, sNode, rNode, wNode]
     self.potential = Distribution.Potential(self.nodes, default=1)
コード例 #4
0
 def testBasicDiv(self):
     assert all(self.potential.table == 1)
     other = Distribution.Potential(self.nodes, default=2)
     new = self.potential / other
     assert all(new.table == 0.5)
     assert all(self.potential.table == 1)
     self.potential /= other
     assert all(new.table == 0.5)
コード例 #5
0
ファイル: NodeJT.py プロジェクト: semolarudy/inferenceAI
 def reinit_potential(self):
     self.potential = Distribution.Potential(self.var)
コード例 #6
0
ファイル: NodeJT.py プロジェクト: semolarudy/inferenceAI
 def __init__(self, name, cx, cy):
     self.name = name
     self.var = cx.variables.intersection(cy.variables)
     self.potential = Distribution.Potential(self.var)
     self.visited = False
     self.neighbors = [cx, cy]
コード例 #7
0
 def testBasicMultiply(self):
     new = self.potential * Distribution.Potential(self.nodes[1:3],
                                                   default=3)
     # This just checks their nodesets are equal
     assert (len(new.nodes) == len(self.potential.nodes))
コード例 #8
0
 def testPotentialEQ(self):
     new = Distribution.Potential(self.nodes)
     assert (self.potential == new)