コード例 #1
0
    def fetch_nodearray_definitions(self):
        '''
            A wrapper around the autoscale library function to parse Configuration.autoscale.* chef attributes and add
            the 'ungrouped' attribute to the machine types.
            
            See cyclecloud.nodearrays.NodearrayDefinitions for more info.
        '''
        nodearray_definitions = machine.fetch_nodearray_definitions(self.clusters_api, self.default_placement_attrs)
        nodearray_definitions.placement_group_optional = True

        filtered_nodearray_definitions = nodearrays.NodearrayDefinitions()
        
        for machinetype in nodearray_definitions:
            if machinetype.get("disabled", False):
                continue
                
            # ensure that any custom attribute the user specified, like disk = 100G, gets parsed correctly
            for key, value in machinetype.iteritems():
                try:
                    machinetype[key] = pbscc.parse_gb_size(key, value)
                except InvalidSizeExpressionError:
                    pass
                
            # kludge: there is a strange bug where ungrouped is showing up as a string and not a boolean.
            if not machinetype.get("group_id"):
                machinetype["ungrouped"] = "true"
                filtered_nodearray_definitions.add_machinetype(machinetype)
            else:
                machinetype["ungrouped"] = "false"
                filtered_nodearray_definitions.add_machinetype_with_placement_group(machinetype.get("group_id"), machinetype)
            
        return filtered_nodearray_definitions
コード例 #2
0
    def query_jobs(self):
        '''
            Converts PBS jobs into cyclecloud.job.Job instances. It will also compress jobs that have the exact same requirements.
        '''
        scheduler_config = self.driver.scheduler_config()
        scheduler_resources = [] + scheduler_config["resources"]
        # special case for hostname so we can automatically place jobs onto the appropriate host
        scheduler_resources.append("hostname")
        scheduler_resources.append("instance_id")
        
        group_jobs = not self.disable_grouping
        running_autoscale_jobs = []
        idle_autoscale_jobs = []
    
        # get the raw string outputs first, and convert it second. This somewhat limits the
        # race condition of asking the status of the queue twice.
        running_raw_jobs_str, running_converter = self.driver.running_jobs()
        queued_raw_jobs_str, queued_converter = self.driver.queued_jobs()
        
        running_raw_jobs = running_converter(running_raw_jobs_str)
        queued_raw_jobs = queued_converter(queued_raw_jobs_str)
        
        raw_jobs = []
        
        for raw_job in running_raw_jobs:
            # it is only running on a single node
            if '+' not in raw_job["exec_vnode"]:
                raw_jobs.append(raw_job)
                continue
            
            for vnode in raw_job["exec_vnode"].split("+"):
                sub_raw_job = deepcopy(raw_job)
                sub_raw_job["exec_vnode"] = vnode
                raw_jobs.append(sub_raw_job)
        
        for raw_job in queued_raw_jobs:
            if not raw_job["resource_list"].get("select"):
                raw_jobs.append(raw_job)
            else:
                # pbspro, like many schedulers, allows a varying set requirements for nodes in a single submission.
                # we will break it apart here as if they had split them individually.
                
                place = raw_job["resource_list"].get("place")
                slot_type = raw_job["resource_list"].get("slot_type")

                chunks = pbscc.parse_select(raw_job)
                for n, chunk in enumerate(chunks):
                    # only pay the penalty of copies when we actually have multi-chunk jobs
                    sub_raw_job = deepcopy(raw_job)

                    if len(chunks) > 1:
                        sub_raw_job["job_id"] = "%s.%d" % (sub_raw_job["job_id"], n) 
                    
                    sub_raw_job["resource_list"] = {}
                    if place:
                        sub_raw_job["resource_list"]["place"] = place
                        
                    if slot_type:
                        sub_raw_job["resource_list"]["slot_type"] = slot_type
                        
                    sub_raw_job["resource_list"]["select"] = pbscc.format_select(chunk)
                    chunk["nodect"] = int(chunk["select"])
                    if "ncpus" not in chunk:
                        chunk["ncpus"] = "1"
                    
                    for key, value in chunk.iteritems():
                        if key not in ["select", "nodect"]:
                            try:
                                value = pbscc.parse_gb_size(key, value) * chunk["nodect"]
                            except InvalidSizeExpressionError:
                                pass
                            
                            sub_raw_job["resource_list"][key] = value
                    
                    sub_raw_job["nodect"] = sub_raw_job["resource_list"]["nodect"] = chunk["nodect"]
                    raw_jobs.append(sub_raw_job)
        
        warnings = set()
        raw_jobs = [x for x in raw_jobs if x["job_state"].upper() in [pbscc.JOB_STATE_QUEUED,
                                                                      pbscc.JOB_STATE_RUNNING,
                                                                      pbscc.JOB_STATE_BATCH]]
        
        for raw_job in raw_jobs:
            pbs_job = mockpbs.mock_job(raw_job)
            nodect = int(pbs_job.Resource_List["nodect"])
            
            if pbs_job["job_state"].upper() == pbscc.JOB_STATE_RUNNING:
                # update running job
                live_resources = pbscc.parse_exec_vnode(raw_job["exec_vnode"])
                for key, value in live_resources.iteritems():
                    # live resources are calculated on a per node basis, but the Resource_List is based
                    # on a total basis.
                    # we will normalize this below
                    
                    if isinstance(value, numbers.Number):
                        pbs_job.Resource_List[key] = value * nodect
                    else:
                        pbs_job.Resource_List[key] = value
                pbs_job["executing_hostname"] = live_resources["hostname"]
                
            is_array = bool(pbs_job.get("array", False))
            
            slots_per_job = int(pbs_job.Resource_List['ncpus']) / nodect 
            slot_type = pbs_job.Resource_List["slot_type"]  # can be None, similar to {}.get("key"). It is a pbs class.
            pbscc.info("found slot_type %s." % slot_type)
            
            placement = pbscc.parse_place(pbs_job.Resource_List.get("place"))
                    
            # Note: not sure we will ever support anything but group_id for autoscale purposes.
            # User could pick, say, group=host, which implies an SMP job, not a parallel job.
            
            if placement.get("grouping", "group=group_id") != "group=group_id":
                placement.pop("grouping")

            if placement.get("arrangement", "").lower() in ["scatter", "vscatter"]:
                pack = "scatter"
            else:
                pack = "pack"
            
            exclusive = placement.get("sharing", "").lower() in ["excl", "exclhost"]
            # we may need to support sharing at some point, but it seems that we can ignore it for now.
            _shared = placement.get("sharing") in ["sharing"]
            placeby = placement.get("grouping")
            
            autoscale_job = Job(name=pbs_job["job_id"],
                                nodearray=slot_type,
                                nodes=nodect,
                                packing_strategy=pack,
                                exclusive=exclusive,
                                resources={"ncpus": 0},
                                executing_hostname=pbs_job.get("executing_hostname"))

            if placeby:
                autoscale_job.placeby = placeby.split("=", 1)[-1]
            
            if is_array:
                array_count = 0
                array_tasks = raw_job["array_state_count"]

                # Only grab the first two array task states (queued and running)
                for ajob in str(array_tasks).split(" ")[:2]:
                    array_count += int(ajob.split(":")[1])

                # Multiply the number of cpus needed by number of tasks in the array
                if array_count != 0:
                    slots_per_job *= array_count
            else:
                array_count = 1
                    
            # If it's an MPI job and grouping is enabled
            # we want to use a grouped autoscale_job to get tightly coupled nodes

            if group_jobs and placement.get("grouping"): 
                autoscale_job['grouped'] = True
                autoscale_job["nodes"] *= array_count
                autoscale_job.placeby_value = "single"
            elif is_array:
                autoscale_job["nodes"] *= array_count

            autoscale_job.ncpus += slots_per_job
            
            for attr, value in pbs_job.Resource_List.iteritems():
                if attr not in scheduler_resources:
                    # if it isn't a scheduler level attribute, don't bother 
                    # considering it for autoscale as the scheduler won't respect it either.
                    continue
                try:
                    value = pbscc.parse_gb_size(attr, value)
                    value = value / nodect
                except InvalidSizeExpressionError:
                    if value.lower() in ["true", "false"]:
                        value = value.lower() == "true"

                autoscale_job.resources[attr] = value
                
            if raw_job["job_state"] == pbscc.JOB_STATE_QUEUED:
                idle_autoscale_jobs.append(autoscale_job)
            else:
                running_autoscale_jobs.append(autoscale_job)
                
        for warning in warnings:
            format_string, values = warning[0], warning[1:]
            pbscc.error(format_string % values)
        
        # leave an option for disabling this in case it causes issues.
        if self.cc_config.get("pbspro.compress_jobs", False):
            all_autoscale_jobs = running_autoscale_jobs + compress_queued_jobs(idle_autoscale_jobs)
        else:
            all_autoscale_jobs = running_autoscale_jobs + idle_autoscale_jobs
            
        return all_autoscale_jobs
コード例 #3
0
    def process_pbsnode(self, pbsnode, instance_ids_to_shutdown, nodearray_definitions):
        '''
            If the pbsnode is offline, will handle evaluating whether the node can be shutdown. See instance_ids_to_shutdown, which
            is an OUT parameter here.
            
            Otherwise convert the pbsnode into a cyclecloud.machine.Machine instance.
        '''
        
        states = set(pbsnode["state"].split(","))
        resources = pbsnode["resources_available"]
        # host has incorrect case
        hostname = resources["vnode"]
        
        instance_id = resources.get("instance_id", autoscale_util.uuid("instanceid"))
        
        def try_shutdown_pbsnode():
            if not instance_id:
                pbscc.error("instance_id was not defined for host %s, can not shut it down" % hostname)
            elif "down" in states:
                # don't immediately remove down nodes, give them time to recover from network failure.
                remove_down_nodes = float(self.cc_config.get("pbspro.remove_down_nodes", 300))
                since_down = self.clock.time() - pbsnode["last_state_change_time"]
                if since_down > remove_down_nodes:
                    pbscc.error("Removing down node %s after %.0f seconds", hostname, since_down)
                    instance_ids_to_shutdown[instance_id] = hostname
                    return True
                else:
                    omega = remove_down_nodes - since_down
                    pbscc.warn("Not removing down node %s for another %.0f seconds", hostname, omega)
            else:
                instance_ids_to_shutdown[instance_id] = hostname
                return True
            
            return False
        
        if "offline" in states:
            if not pbsnode.get("jobs", []):
                pbscc.fine("%s is offline and has no jobs, may be able to shut down" % hostname)
                if try_shutdown_pbsnode():
                    return
            else:
                pbscc.fine("Host %s is offline but still running jobs" % hostname)
        
        # if the node is just in the down state, try to shut it down. 
        if set(["down"]) == states and try_shutdown_pbsnode():
            return
        
        # just ignore complex down nodes (down,job-busy etc) until PBS decides to change the state.
        if "down" in states:
            return
        
        # convert relevant resources from bytes to floating point (GB)
        for key in resources:
            
            value = resources[key]
            if isinstance(value, basestring) and value.lower() in ["true", "false"]:
                value = value.lower() == "true"
            elif isinstance(value, list):
                # TODO will need to support this eventually
                continue
            else:
                try:
                    resources[key] = pbscc.parse_gb_size(key, resources[key])
                except InvalidSizeExpressionError:
                    pass
        
        resources["hostname"] = hostname
        
        nodearray_name = resources.get("nodearray") or resources.get("slot_type")
        group_id = resources.get("group_id")

        if resources.get("machinetype") and nodearray_name:
            machinetype = nodearray_definitions.get_machinetype(nodearray_name, resources.get("machinetype"), group_id)
        else:
            # rely solely on resources_available
            pbscc.debug("machinetype is not defined for host %s, relying only on resources_available" % hostname)
            machinetype = {"availableCount": 1, "name": "undefined"}
            
        inst = machine.new_machine_instance(machinetype, **pbsnode["resources_available"])

        return inst