def draw_activation_layer(input_pts, input_qualities, log_dir, layer='layer1'):
    """input_pts: (num_point, 3)
    input_qualities: (num_point, C)
    """
    total_path = ROOT_DIR + "/" + log_dir + "/" + layer + "/"
    if not os.path.exists(total_path):
        os.makedirs(total_path)

    feature_diml = input_qualities.shape[-1]
    for i in range(feature_diml):
        quality = input_qualities[:, i]

        quality1 = copy.deepcopy(quality)
        quality2 = copy.deepcopy(quality)
        quality3 = copy.deepcopy(quality)
        diameter = 5

        img1 = pc_util.draw_point_cloud(input_pts, quality1,
                                        zrot=110 / 180.0 * np.pi,
                                        xrot=45 / 180.0 * np.pi,
                                        yrot=0 / 180.0 * np.pi,
                                        color=True, percentage=1, add_diameter=diameter)
        img2 = pc_util.draw_point_cloud(input_pts, quality2,
                                        zrot=70 / 180.0 * np.pi,
                                        xrot=135 / 180.0 * np.pi,
                                        yrot=90 / 180.0 * np.pi,
                                        color=True, percentage=1, add_diameter=diameter)
        img3 = pc_util.draw_point_cloud(input_pts, quality3,
                                        zrot=180.0 / 180.0 * np.pi,
                                        xrot=90 / 180.0 * np.pi,
                                        yrot=0 / 180.0 * np.pi,
                                        color=True, percentage=1, add_diameter=diameter)
        im_array = np.concatenate([img1, img2, img3], 1)
        img = Image.fromarray(np.uint8(im_array * 255.0), 'RGB')
        img_path = total_path + str(i) + ".jpg"
        img.save(img_path)

    ##################################################################
    html_name = "vis_" + layer + ".html"
    index_path = os.path.join(total_path, html_name)
    index = open(index_path, "w")
    index.write("<html><body><table><tr>")

    # get sample list
    items = os.listdir(total_path)
    items.sort()

    # write img to file
    for item in items:
        if item.endswith(".jpg"):
            index.write("<tr>")
            index.write("<td>%s</td>" % item)
            id = item.split(".")[0]
            img_path = "%s.jpg" % (id)
            index.write("<td><img width='100%%', src='%s'></td>" % img_path)
    index.close()
コード例 #2
0
def draw_activation(input_pts,
                    input_qualities,
                    log_dir,
                    folder,
                    method='region'):
    """input_pts: (M, num_point, 3)
    input_qualities: (M, num_point, 1)
    state: eval or test
    epoch: the iteration of training
    method: region or point
    """
    model_num = input_pts.shape[0]
    total_path = ROOT_DIR + "/" + log_dir + "/" + folder + "/html/"
    print(total_path)
    if not os.path.exists(total_path):
        os.makedirs(total_path)

    for i in range(model_num):
        input_gt = input_pts[i, :, :]
        quality = input_qualities[i, :, 0]

        quality1 = copy.deepcopy(quality)
        quality2 = copy.deepcopy(quality)
        quality3 = copy.deepcopy(quality)
        if method == 'point':
            diameter = 5
        else:
            diameter = 5

        img1 = pc_util.draw_point_cloud(input_gt,
                                        quality1,
                                        add_diameter=diameter,
                                        zrot=110 / 180.0 * np.pi,
                                        xrot=45 / 180.0 * np.pi,
                                        yrot=0 / 180.0 * np.pi,
                                        normalize=False,
                                        color=True)
        img2 = pc_util.draw_point_cloud(input_gt,
                                        quality2,
                                        add_diameter=diameter,
                                        zrot=70 / 180.0 * np.pi,
                                        xrot=135 / 180.0 * np.pi,
                                        yrot=90 / 180.0 * np.pi,
                                        normalize=False,
                                        color=True)
        img3 = pc_util.draw_point_cloud(input_gt,
                                        quality3,
                                        add_diameter=diameter,
                                        zrot=180.0 / 180.0 * np.pi,
                                        xrot=90 / 180.0 * np.pi,
                                        yrot=0 / 180.0 * np.pi,
                                        normalize=False,
                                        color=True)
        im_array = np.concatenate([img1, img2, img3], 1)
        img = Image.fromarray(np.uint8(im_array * 255.0), 'RGB')
        img_path = total_path + str(i) + ".jpg"
        img.save(img_path)

    ##################################################################
    html_name = "vis_" + method + ".html"
    index_path = os.path.join(total_path, html_name)
    index = open(index_path, "w")
    index.write("<html><body><table><tr>")

    # get sample list
    items = os.listdir(total_path)
    items.sort()

    # write img to file
    for item in items:
        if item.endswith(".jpg"):
            index.write("<tr>")
            index.write("<td>%s</td>" % item)
            id = item.split(".")[0]
            img_path = "%s.jpg" % (id)
            index.write("<td><img width='100%%', src='%s'></td>" % img_path)
    index.close()
コード例 #3
0
def eval_one_epoch(sess, ops, num_votes=1, topk=1):
    error_cnt = 0
    is_training = False
    total_correct = 0
    total_seen = 0
    loss_sum = 0
    total_seen_class = [0 for _ in range(NUM_CLASSES)]
    total_correct_class = [0 for _ in range(NUM_CLASSES)]
    fout = open(os.path.join(DUMP_DIR, 'pred_label.txt'), 'w')
    for fn in range(len(TEST_FILES)):
        log_string('----'+str(fn)+'----')
        current_data, current_label = provider.loadDataFile(TEST_FILES[fn])
        current_data = current_data[:,0:NUM_POINT,:]
        current_label = np.squeeze(current_label)
        
        file_size = current_data.shape[0]
        print(file_size)

        # set by wind:
        # my code is based on batch_size = 1
        # set batch_size = 1 for this file
        for batch_idx in range(file_size):
#        for batch_idx in np.array([1,710,1805,385,703,1501])-1:
            print(batch_idx)
            start_idx = batch_idx
            end_idx = batch_idx + 1 
            cur_batch_size = 1

            no_influence_position = current_data[start_idx,0,:].copy()

            global_feature_list = []
            orgin_data = current_data[start_idx,:,:].copy()

            #-------------------------------------------------------------------
            # save origin data
            #-------------------------------------------------------------------
            fileName = 'dataAnalysis/figures/%d_orgin_points' % (start_idx)
            img_filename = fileName + '.jpg'
#            plyFileName = fileName + '.ply'
#            pc_util.write_ply(np.squeeze(orgin_data),plyFileName)
#             pc_util.pyplot_draw_point_cloud(np.squeeze( orgin_data ),'')
            output_img = pc_util.draw_point_cloud(np.squeeze(orgin_data))
            scipy.misc.imsave(img_filename, output_img)
            
            #-------------------------------------------------------------------
            # get global matrix
            #-------------------------------------------------------------------
            feed_dict = {ops['pointclouds_pl']: current_data[start_idx:end_idx, :, :] ,
                                ops['labels_pl']: current_label[start_idx:end_idx],
                                ops['is_training_pl']: is_training}

            global_matrix = np.array(sess.run(ops['global_matrix'],
                                    feed_dict=feed_dict))
            
            global_matrix = global_matrix[global_matrix[:,0].argsort()]
#            print(global_matrix.shape)
#            plt.imshow(global_matrix, interpolation='nearest')
#            plt.show()
            fileName = 'dataAnalysis/figures/%d/%d_global_matrix' % (current_label[start_idx], batch_idx)
            img_filename = fileName + '.png'
            if not os.path.exists(os.path.dirname(img_filename)):
                try:
                    os.makedirs(os.path.dirname(img_filename))
                except OSError as exc: # Guard against race condition
                    if exc.errno != errno.EEXIST:
                        raise
            scipy.misc.imsave(img_filename, global_matrix)
#            #-------------------------------------------------------------------
#            # get critical points
#            #-------------------------------------------------------------------
#            for change_point in range(NUM_POINT):
#                current_data[start_idx, change_point, :] = no_influence_position.copy()
#            
#            for change_point in range(NUM_POINT):
#                current_data[start_idx, change_point, :] = orgin_data[change_point, :].copy()
#                # Aggregating BEG
#                for vote_idx in range(num_votes):
#                    if FLAGS.model == 'pointnet_cls_basic':
#                        rotated_data = current_data[start_idx:end_idx, :, :] # directional pointNet
#                    else:
#                        rotated_data = provider.rotate_point_cloud_by_angle(current_data[start_idx:end_idx, :, :],
#                                                      vote_idx/float(num_votes) * np.pi * 2) # pointNet
#                    feed_dict = {ops['pointclouds_pl']: rotated_data,
#                                ops['labels_pl']: current_label[start_idx:end_idx],
#                                ops['is_training_pl']: is_training}
#
#                    global_feature_val = sess.run(ops['global_feature'],
#                                            feed_dict=feed_dict)
#
#                    global_feature_list.append(global_feature_val)
#
#            critical_points = []
#            max_feature = np.zeros(global_feature_list[0].size) - 10
#            feature_points = np.zeros(global_feature_list[0].size)
#            for index in range(len(global_feature_list)):
#                #distance = math.sqrt(((global_feature_list[index] - global_feature_list[-1]) ** 2).sum())
#                #distance_list.append(distance)
#                top = global_feature_list[index]
#                feature_points = np.where(top > max_feature, index, feature_points)
#                max_feature = np.where(top > max_feature, top, max_feature)
#                
#            for index in feature_points[0]:
#                critical_points.append(orgin_data[int(index), :])
#            critical_points = list(set([tuple(t) for t in critical_points]))
#            
#            fileName = 'dataAnalysis/figures/%d_critical_points' % (start_idx)
#            img_filename = fileName + '.jpg'
#            plyFileName = fileName + '.ply'
#            pc_util.write_ply(np.squeeze( critical_points),plyFileName)
##             pc_util.pyplot_draw_point_cloud(np.squeeze( critical_points ),'')
#            output_img = pc_util.draw_point_cloud(np.squeeze( critical_points))
#            scipy.misc.imsave(img_filename, output_img)
            

#            #-------------------------------------------------------------------
#            # get upper-bound points
#            #-------------------------------------------------------------------
#            upper_bound_points = np.empty_like(orgin_data.shape)
#            upper_bound_points = orgin_data.copy()
#            current_data[start_idx,:,:] = orgin_data.copy()
#
#            search_step = 0.05
#            stand_feature = np.empty_like(global_feature_list[-1].shape)
#            max_position = [-0.5,-0.5,-0.5]
#            min_position = [0.5, 0.5, 0.5]
#
#            for point_index in range(NUM_POINT):
#                max_position = np.maximum(max_position, current_data[start_idx,point_index,:])
#                min_position = np.minimum(min_position, current_data[start_idx,point_index,:])
#            
#            print(max_position)
#            print(min_position)
#            for vote_idx in range(num_votes):
#                if FLAGS.model == 'pointnet_cls_basic':
#                    rotated_data = current_data[start_idx:end_idx, :, :] # directional pointNet
#                else:
#                    rotated_data = provider.rotate_point_cloud_by_angle(current_data[start_idx:end_idx, :, :],
#                                                  vote_idx/float(num_votes) * np.pi * 2) # pointNet
#
#                feed_dict = {ops['pointclouds_pl']: rotated_data,
#                            ops['labels_pl']: current_label[start_idx:end_idx],
#                            ops['is_training_pl']: is_training}
#                
#                
#                global_feature_val = sess.run(ops['global_feature'],feed_dict=feed_dict)
#                stand_feature = global_feature_val.copy()
#
#            change_point = 0
#            current_data[start_idx,:,:] = orgin_data.copy()
#            for point_index in range(NUM_POINT):
#                if not (point_index in feature_points[0]):
#                    change_point = point_index
#                    break
#             
#            for x in np.linspace(min_position[0], max_position[0], (max_position[0]-min_position[0])//search_step +1):
#                for y in np.linspace(min_position[1], max_position[1], (max_position[1]-min_position[1])//search_step +1):
#                    for z in np.linspace(min_position[2], max_position[2], (max_position[2]-min_position[2])//search_step +1):
#                        current_data[start_idx,change_point,:] = (x,y,z) #+ orgin_position
# 
#                        # Aggregating BEG
#                        for vote_idx in range(num_votes):
#                             
#                            if FLAGS.model == 'pointnet_cls_basic':
#                                rotated_data = current_data[start_idx:end_idx, :, :] # directional pointNet
#                            else:
#                                rotated_data = provider.rotate_point_cloud_by_angle(current_data[start_idx:end_idx, :, :],
#                                                              vote_idx/float(num_votes) * np.pi * 2) # pointNet
#                                 
#                            feed_dict = {ops['pointclouds_pl']: rotated_data,
#                                        ops['labels_pl']: current_label[start_idx:end_idx],
#                                        ops['is_training_pl']: is_training}
# 
#                            global_feature_val = sess.run(ops['global_feature'],feed_dict=feed_dict)
# 
#                            if (global_feature_val <= stand_feature).all():
#                                upper_bound_points = np.append(upper_bound_points, np.array([[x,y,z]]),axis = 0) 
#             
#            fileName = 'dataAnalysis/figures/%d_upper_bound_points' % (start_idx)
#            img_filename = fileName + '.jpg'
#            plyFileName = fileName + '.ply'
#            pc_util.write_ply(np.squeeze(upper_bound_points),plyFileName)
##             pc_util.pyplot_draw_point_cloud(np.squeeze( upper_bound_points ),'')
#            output_img = pc_util.draw_point_cloud(np.squeeze(upper_bound_points))
#            scipy.misc.imsave(img_filename, output_img)

            current_data[start_idx,:,:] = orgin_data.copy()
            print('------Finished!---------\n')