def main(): training = datas.training training = training.drop(["SibSp"], axis=1) testing = datas.testing testing = testing.drop(["SibSp"], axis=1) random_forest = RandomForestClassifier(n_estimators=100, min_samples_split=1, max_depth=None, min_samples_leaf=5) random_forest = random_forest.fit(pca.reduced_data(training),training.ix[:,'Survived']) result = random_forest.predict(pca.reduced_data(testing)) return result
def main(): training = datas.training training = training.drop(["Embarked"], axis=1) testing = datas.testing testing = testing.drop(["Embarked"], axis=1) knn = KNeighborsClassifier(15, weights="uniform") knn.fit(pca.reduced_data(training, 4), training.ix[:, "Survived"]) result = knn.predict(pca.reduced_data(testing, 4)) datas.write_data(result)
def main(): training = datas.training training = training.drop(['Embarked'], axis=1) testing = datas.testing testing = testing.drop(['Embarked'], axis=1) knn = KNeighborsClassifier(15, weights="uniform") knn.fit(pca.reduced_data(training, 4), training.ix[:, 'Survived']) result = knn.predict(pca.reduced_data(testing, 4)) datas.write_data(result)
def test(): training = datas.training knn = KNeighborsClassifier(25, weights="uniform") kfold = cross_validation.KFold(len(training), 3) result = cross_validation.cross_val_score(knn, pca.reduced_data(training), training['Survived'], cv=kfold, n_jobs=1) print result
def test(): training = datas.training knn = KNeighborsClassifier(25, weights="uniform") kfold = cross_validation.KFold(len(training), 3) result = cross_validation.cross_val_score(knn, pca.reduced_data(training), training["Survived"], cv=kfold, n_jobs=1) print result