コード例 #1
0
def eval_single_ckpt(model,
                     test_loader,
                     args,
                     output_dir,
                     eval_output_dir,
                     logger,
                     epoch_id,
                     dist_test=False):
    ckpt_dir = output_dir / 'ckpt'
    ckpt = ckpt_dir / 'checkpoint_epoch_110.pth'
    # load checkpoint
    model.load_params_from_file(filename=ckpt, logger=logger, to_cpu=dist_test)
    model.cuda()
    model.eval()

    # start evaluation
    for i, batch_dict in enumerate(test_loader):
        load_data_to_gpu(batch_dict)
        with torch.no_grad():
            pred_dicts = model(batch_dict)
        print('GT BBOXES')
        print(batch_dict['gt_boxes'])
        print('CLS PREDS')
        print(pred_dicts['cls_preds'])
        print('BBOX PREDS')
        print(pred_dicts['box_preds'])
        #print(pred_dicts.keys())
        if i > 5:
            break
コード例 #2
0
    def run_model(self, points):
        t_t = time.time()
        # rospy.loginfo('Input: pointcloud with shape {}'.format(points.shape))
        input_dict = {
            'points': points,
            'frame_id': 0,
        }

        data_dict = self.dataset.prepare_data(data_dict=input_dict)
        data_dict = self.dataset.collate_batch([data_dict])
        load_data_to_gpu(data_dict)

        torch.cuda.synchronize()
        t = time.time()

        # pred_dicts, _ = self.net.forward(data_dict)
        with torch.no_grad():
            pred_dicts, _ = self.net(data_dict)

        torch.cuda.synchronize()
        inference_time = time.time() - t
        self.inference_times.append(inference_time)
        rospy.loginfo(f" PointRCNN inference cost time: {time.time() - t}")
        rospy.loginfo("Stdev: {}".format(np.std(self.inference_times)))

        boxes_lidar = pred_dicts[0]["pred_boxes"].detach().cpu().numpy()
        scores = pred_dicts[0]["pred_scores"].detach().cpu().numpy()
        types = pred_dicts[0]["pred_labels"].detach().cpu().numpy()
        # rospy.loginfo('Detected {} persons.'.format(boxes_lidar.shape[0]))

        return scores, boxes_lidar, types
コード例 #3
0
    def detector(self, points):
        with torch.no_grad():
            # prepare data and load data to gpu
            input_dict = {
                'points': points,
                'frame_id': 0,
            }
            data_dict = self.demo_dataset.prepare_data(data_dict=input_dict)
            data_dict = self.demo_dataset.collate_batch([data_dict])
            load_data_to_gpu(data_dict)

            # inference once in batch size : 1
            pred_dicts = self.model.forward(data_dict)[0][0]

            # analysis the result
            pred_scores = pred_dicts['pred_scores'].detach().cpu().numpy()
            indices = pred_scores > self.score_threshold

            pred_scores = pred_scores[indices]
            pred_boxes = pred_dicts['pred_boxes'].detach().cpu().numpy(
            )[indices]
            pred_labels = pred_dicts['pred_labels'].detach().cpu().numpy(
            )[indices]
            self.viz(pred_boxes, "excavator/LiDAR_80_1")
            return pred_boxes, pred_scores, pred_labels
コード例 #4
0
ファイル: demo.py プロジェクト: zhangtingyu11/OpenPCDet
def main():
    args, cfg = parse_config()
    logger = common_utils.create_logger()
    logger.info('-----------------Quick Demo of OpenPCDet-------------------------')
    demo_dataset = DemoDataset(
        dataset_cfg=cfg.DATA_CONFIG, class_names=cfg.CLASS_NAMES, training=False,
        root_path=Path(args.data_path), ext=args.ext, logger=logger
    )
    logger.info(f'Total number of samples: \t{len(demo_dataset)}')

    model = build_network(model_cfg=cfg.MODEL, num_class=len(cfg.CLASS_NAMES), dataset=demo_dataset)
    model.load_params_from_file(filename=args.ckpt, logger=logger, to_cpu=True)
    model.cuda()
    model.eval()
    with torch.no_grad():
        for idx, data_dict in enumerate(demo_dataset):
            logger.info(f'Visualized sample index: \t{idx + 1}')
            data_dict = demo_dataset.collate_batch([data_dict])
            load_data_to_gpu(data_dict)
            pred_dicts, _ = model.forward(data_dict)

            V.draw_scenes(
                points=data_dict['points'][:, 1:], ref_boxes=pred_dicts[0]['pred_boxes'],
                ref_scores=pred_dicts[0]['pred_scores'], ref_labels=pred_dicts[0]['pred_labels']
            )

            if not OPEN3D_FLAG:
                mlab.show(stop=True)

    logger.info('Demo done.')
コード例 #5
0
    def update(self):
        idx = self.offset % len(self.dataset)
        # idx = self.data_idx[idx]

        with torch.no_grad():
            data_dict = self.dataset.__getitem__(idx)

            logger.info(f'Visualized sample index: \t{idx + 1}')
            data_dict = self.dataset.collate_batch([data_dict])
            load_data_to_gpu(data_dict)
            pred_dicts, _ = self.model.forward(data_dict)

            # img_path = os.path.join(self.root_path, example['image_path'])
            # img = cv2.imread(img_path)
            # Show
            gt_objs = None
            if self.dataset.split == 'val':
                gt_objs = self.dataset.val_data_list[idx]['annos'][
                    'gt_boxes_lidar']
            self.update_view(
                idx,
                points=data_dict['points'][:, 1:].cpu().numpy(),
                objs=pred_dicts[0]['pred_boxes'].cpu(),
                ref_scores=pred_dicts[0]['pred_scores'].cpu().numpy(),
                ref_labels=pred_dicts[0]['pred_labels'].cpu().numpy(),
                gt_objs=gt_objs,
                # img=img
            )
コード例 #6
0
ファイル: multi_inference.py プロジェクト: muzi2045/OpenPCDet
    def run(self):
        t_t = time.time()
        input_dict = {
            'points': self.points,
            'frame_id': 0,
        }

        data_dict = self.demo_dataset.prepare_data(data_dict=input_dict)
        data_dict = self.demo_dataset.collate_batch([data_dict])
        load_data_to_gpu(data_dict)

        torch.cuda.synchronize()
        t = time.time()

        pred_dicts, _ = self.net.forward(data_dict)

        torch.cuda.synchronize()
        print(f" pvrcnn inference cost time: {time.time() - t}")

        # pred = remove_low_score_nu(pred_dicts[0], 0.45)
        # boxes_lidar = pred["pred_boxes"].detach().cpu().numpy()
        # scores = pred["pred_scores"].detach().cpu().numpy()
        # types = pred["pred_labels"].detach().cpu().numpy()

        boxes_lidar = pred_dicts[0]["pred_boxes"].detach().cpu().numpy()
        scores = pred_dicts[0]["pred_scores"].detach().cpu().numpy()
        types = pred_dicts[0]["pred_labels"].detach().cpu().numpy()

        # print(f" pred boxes: { boxes_lidar }")
        # print(f" pred_scores: { scores }")
        # print(f" pred_labels: { types }")

        return scores, boxes_lidar, types
コード例 #7
0
    def run(self, points, calib, frame):
        t_t = time.time()
        num_features = 4  # X,Y,Z,intensity
        self.points = points.reshape([-1, num_features])

        frame = 0
        timestamps = np.empty((len(self.points), 1))
        timestamps[:] = frame

        self.points = np.append(self.points, timestamps, axis=1)
        self.points[:, 0] += move_lidar_center

        input_dict = {
            'points': self.points,
            'frame_id': frame,
        }

        data_dict = self.demo_dataset.prepare_data(data_dict=input_dict)
        data_dict = self.demo_dataset.collate_batch([data_dict])
        load_data_to_gpu(data_dict)

        torch.cuda.synchronize()
        t = time.time()

        pred_dicts, _ = self.net.forward(data_dict)

        torch.cuda.synchronize()
        inference_time = time.time() - t
        inference_time_list.append(inference_time)
        mean_inference_time = sum(inference_time_list) / len(
            inference_time_list)

        boxes_lidar = pred_dicts[0]["pred_boxes"].detach().cpu().numpy()
        scores = pred_dicts[0]["pred_scores"].detach().cpu().numpy()
        types = pred_dicts[0]["pred_labels"].detach().cpu().numpy()

        pred_boxes = np.copy(boxes_lidar)
        pred_dict = self.get_template_prediction(scores.shape[0])
        if scores.shape[0] == 0:
            return pred_dict

        pred_boxes_camera = box_utils.boxes3d_lidar_to_kitti_camera(
            pred_boxes, calib)
        pred_boxes_img = box_utils.boxes3d_kitti_camera_to_imageboxes(
            pred_boxes_camera, calib, image_shape=image_shape)

        pred_dict['name'] = np.array(cfg.CLASS_NAMES)[types - 1]
        pred_dict['alpha'] = -np.arctan2(
            -pred_boxes[:, 1], pred_boxes[:, 0]) + pred_boxes_camera[:, 6]
        pred_dict['bbox'] = pred_boxes_img
        pred_dict['dimensions'] = pred_boxes_camera[:, 3:6]
        pred_dict['location'] = pred_boxes_camera[:, 0:3]
        pred_dict['rotation_y'] = pred_boxes_camera[:, 6]
        pred_dict['score'] = scores
        pred_dict['boxes_lidar'] = pred_boxes

        return scores, boxes_lidar, types, pred_dict
コード例 #8
0
def inference_with_info():
    demo_dataset = DemoDataset(
        dataset_cfg=cfg.DATA_CONFIG, class_names=cfg.CLASS_NAMES, training=False,
        root_path=Path(args.data_path), logger=logger)
    logger.info(f'Total number of samples: \t{len(demo_dataset)}')

    model = build_network(model_cfg=cfg.MODEL, num_class=len(cfg.CLASS_NAMES), dataset=demo_dataset)
    with torch.no_grad():
        model.load_params_from_file(filename=args.ckpt, logger=logger, to_cpu=True)
        model.cuda()
        model.eval()

        for idx, data_dict in tqdm(enumerate(demo_dataset)):
            data_dict = demo_dataset.collate_batch([data_dict])
            load_data_to_gpu(data_dict)
            pred_dicts, _ = model.forward(data_dict)

            det_boxes = pred_dicts[0]['pred_boxes'].cpu().detach().numpy()
            scores = pred_dicts[0]['pred_scores'].cpu().numpy()
            labels = pred_dicts[0]['pred_labels'].cpu().numpy()
            gt_boxes = demo_dataset.val_data_list[idx]['annos']['gt_boxes_lidar']

            # Evaluate current frame
            info = ''
            for iou_idx in range(len(ious)):
                for dist_range_idx in range(len(dist_ranges)):
                    tp, num_valid_det, num_valid_gt, dist_err = get_metrics(gt_boxes, det_boxes,
                                                                            dist_ranges[dist_range_idx],
                                                                            ious[iou_idx])
                    total_num_tp[iou_idx, dist_range_idx] += tp
                    total_num_valid_det[iou_idx, dist_range_idx] += num_valid_det
                    total_num_valid_gt[iou_idx, dist_range_idx] += num_valid_gt
                    total_dist_err[iou_idx, dist_range_idx] += dist_err
                info += 'tp: {}, dt: {}, gt: {}\n'.format(tp, num_valid_det, num_valid_gt)

            det_boxes = det_boxes[:, np.newaxis, :].repeat(3, axis=1)
            gt_boxes = gt_boxes[:, np.newaxis, :].repeat(3, axis=1)
            image = plot_multiframe_boxes(data_dict['points'][:, 1:].cpu().numpy(),
                                          det_boxes, cfg.DATA_CONFIG.POINT_CLOUD_RANGE, gt_boxes=gt_boxes,
                                          scores=scores, labels=labels)
            info = info.split("\n")
            fontScale = 0.6
            thickness = 1
            fontFace = cv2.FONT_HERSHEY_SIMPLEX
            text_size, baseline = cv2.getTextSize(str(info), fontFace, fontScale, thickness)
            for i, text in enumerate(info):
                if text:
                    draw_point = (10, 10 + (text_size[1] + 2 + baseline) * i)
                    cv2.putText(image, text, draw_point, fontFace=fontFace,
                                fontScale=fontScale, color=(0, 255, 0), thickness=thickness)

            [bag_name, _, frame] = demo_dataset.val_data_list[idx]['point_cloud']['lidar_idx'].split('/')
            image_file = os.path.join(save_path, bag_name + '_' + frame[:-4] + '.png')
            cv2.imwrite(image_file, image)
コード例 #9
0
def main():
    args, cfg = parse_config()
    log_file = 'log_inference_%s.txt' % datetime.datetime.now().strftime(
        '%Y%m%d-%H%M%S')
    logger = common_utils.create_logger(log_file, rank=0)
    logger.info(
        '-----------------Inference of OpenPCDet-------------------------')
    test_dataset = DemoDataset(dataset_cfg=cfg.DATA_CONFIG,
                               class_names=cfg.CLASS_NAMES,
                               training=False,
                               root_path=Path(args.data_path),
                               ext=args.ext,
                               logger=logger)
    logger.info(f'Total number of samples: \t{len(test_dataset)}')

    model = build_network(model_cfg=cfg.MODEL,
                          num_class=len(cfg.CLASS_NAMES),
                          dataset=test_dataset)
    model.load_params_from_file(filename=args.ckpt,
                                logger=logger,
                                to_cpu=False)
    model.cuda()
    model.eval()

    if args.save_video_path is not None:
        fourcc = cv2.VideoWriter_fourcc(*'XVID')
        out = cv2.VideoWriter(os.path.join(args.save_video_path, 'result.avi'),
                              fourcc, 10.0, (400, 1600))
        bev_range = [-5, -20, -2, 155, 20, 5]

    with torch.no_grad():
        for idx, data_dict in tqdm(enumerate(test_dataset)):
            data_dict = test_dataset.collate_batch([data_dict])
            load_data_to_gpu(data_dict)
            pred_dicts, _ = model.forward(data_dict)

            if args.save_video_path is not None:
                boxes = pred_dicts[0]['pred_boxes'].cpu().detach().numpy()
                boxes = boxes[:, np.newaxis, :].repeat(3, axis=1)
                gt_boxes = None
                if test_dataset.split == 'val':
                    gt_boxes = test_dataset.val_data_list[idx]['annos'][
                        'gt_boxes_lidar']
                    gt_boxes = gt_boxes[:, np.newaxis, :].repeat(3, axis=1)
                image = plot_multiframe_boxes(
                    data_dict['points'][:, 1:].cpu().numpy(),
                    boxes,
                    bev_range,
                    gt_boxes=gt_boxes)
                cv2.imshow('show_result', image)
                cv2.waitKey(1)
                out.write(image)

    out.release()
コード例 #10
0
ファイル: demo.py プロジェクト: riceleslie/OpenPCDet
def main():
    args, cfg = parse_config()
    logger = common_utils.create_logger()
    logger.info('-----------------Quick Demo of OpenPCDet-------------------------')
    demo_dataset = DemoDataset(
        dataset_cfg=cfg.DATA_CONFIG, class_names=cfg.CLASS_NAMES, training=False,
        root_path=Path(args.data_path), ext=args.ext, logger=logger
    )
    logger.info(f'Total number of samples: \t{len(demo_dataset)}')

    model = build_network(model_cfg=cfg.MODEL, num_class=len(cfg.CLASS_NAMES), dataset=demo_dataset)
    model.load_params_from_file(filename=args.ckpt, logger=logger, to_cpu=True)
    model.cuda()
    model.eval()
    with torch.no_grad():
        for idx, data_dict in enumerate(demo_dataset):
            logger.info(f'Visualized sample index: \t{idx + 1}')
            data_dict = demo_dataset.collate_batch([data_dict])
            load_data_to_gpu(data_dict)
            pred_dicts, _ = model.forward(data_dict)

            points=data_dict['points'][:, 1:]
            ref_boxes=pred_dicts[0]['pred_boxes']
            ref_scores=pred_dicts[0]['pred_scores']
            ref_labels=pred_dicts[0]['pred_labels']
            points_cp=points.cpu()
            points_nu=points_cp.numpy()
            ref_boxes_cp=ref_boxes.cpu()
            ref_boxes_nu=ref_boxes_cp.numpy()
            ref_scores_cp=ref_scores.cpu()
            ref_scores_nu=ref_scores_cp.numpy()
            ref_labels_cp=ref_labels.cpu()
            ref_labels_nu=ref_labels_cp.numpy()
            print(points.shape,ref_boxes.shape)
            print(ref_scores.shape,ref_labels.shape)
            #with open('./save1.npy', 'wb') as f:
            #    np.save(f,points_nu)
            #with open('./save2.npy', 'wb') as f:
            #    np.save(f,ref_boxes_nu)
            #with open('./save3.npy', 'wb') as f:
            #    np.save(f,ref_scores_nu)
            #with open('./save4.npy', 'wb') as f:
            #    np.save(f,ref_labels_nu)
                #np.array(points.shape).tofile(f)
                #points.tofile(f)
    #        V.draw_scenes(
    #            points=data_dict['points'][:, 1:], ref_boxes=pred_dicts[0]['pred_boxes'],
    #            ref_scores=pred_dicts[0]['pred_scores'], ref_labels=pred_dicts[0]['pred_labels']
    #        )
    #        mlab.show(stop=True)

    logger.info('Demo done.')
コード例 #11
0
def main():

    args, cfg = parse_config()
    logger = common_utils.create_logger()
    logger.info('-----------------Quick Demo of OpenPCDet-------------------------')
    demo_dataset = DemoDataset(
        dataset_cfg=cfg.DATA_CONFIG, class_names=cfg.CLASS_NAMES, training=False,
        root_path=Path(args.data_path), ext=args.ext, logger=logger
    )
    logger.info(f'Total number of samples: \t{len(demo_dataset)}')

    if args.saved_pred == "":
        
        model = build_network(model_cfg=cfg.MODEL, num_class=len(cfg.CLASS_NAMES), dataset=demo_dataset)
        model.load_params_from_file(filename=args.ckpt, logger=logger, to_cpu=True)
        model.cuda()
        model.eval()  

        with torch.no_grad():
            for idx, data_dict in enumerate(demo_dataset):
                logger.info(f'Visualized sample index: \t{idx + 1}')
                data_dict = demo_dataset.collate_batch([data_dict])
                load_data_to_gpu(data_dict)
                pred_dicts, _ = model.forward(data_dict)

            with open('../saved_pred/curr_pickle.pkl', 'wb+') as f:
                data_ = {
                    "data_dict": data_dict['points'][:, 1:],
                    "pred_dicts": pred_dicts
                }
                pkl.dump(data_, f) 

    else:

        with open('../saved_pred/curr_pickle.pkl', 'rb') as f:
            data_ = pkl.load(f)

        data_dict = data_["data_dict"]
        pred_dicts = data_["pred_dicts"]

        vdisplay = Xvfb(width=1920, height=1080)
        vdisplay.start()  
        V.draw_scenes(
            points=data_dict['points'][:, 1:], ref_boxes=pred_dicts[0]['pred_boxes'],
            ref_scores=pred_dicts[0]['pred_scores'], ref_labels=pred_dicts[0]['pred_labels']
        )
        vdisplay.stop()

        mlab.show(stop=True)
        mlab.savefig("./test_eg.png")

    logger.info('Demo done.')
コード例 #12
0
def main():
    args, cfg = parse_config()
    logger = common_utils.create_logger()
    logger.info(
        '-----------------Quick Demo of OpenPCDet-------------------------')
    demo_dataset = DemoDataset(dataset_cfg=cfg.DATA_CONFIG,
                               class_names=cfg.CLASS_NAMES,
                               training=False,
                               root_path=Path(args.data_path),
                               ext=args.ext,
                               logger=logger)
    logger.info(f'Total number of samples: \t{len(demo_dataset)}')

    model = build_network(model_cfg=cfg.MODEL,
                          num_class=len(cfg.CLASS_NAMES),
                          dataset=demo_dataset)
    model.load_params_from_file(filename=args.ckpt, logger=logger, to_cpu=True)
    model.cuda()
    model.eval()
    with torch.no_grad():
        for idx, (data_dict, data_path) in enumerate(demo_dataset):
            logger.info(f'Visualized sample index: \t{idx + 1}')
            logger.info("Process: %s" % data_path)
            pred_s = dict()
            pred_s["data_path"] = data_path

            data_dict = demo_dataset.collate_batch([data_dict])
            load_data_to_gpu(data_dict)
            pred_dicts, _ = model.forward(data_dict)

            pred_s['pred_boxes'] = pred_dicts[0]['pred_boxes'].cpu().numpy(
            ).tolist()
            pred_s['pred_scores'] = pred_dicts[0]['pred_scores'].cpu().numpy(
            ).tolist()
            pred_s['pred_labels'] = pred_dicts[0]['pred_labels'].cpu().numpy(
            ).tolist()

            json_path = os.path.splitext(data_path)[0] + ".json"
            with open(json_path, 'w') as fp:
                json.dump(pred_s, fp)

            # exit(1)

            # V.draw_scenes(
            #     points=data_dict['points'][:, 1:], ref_boxes=pred_dicts[0]['pred_boxes'],
            #     ref_scores=pred_dicts[0]['pred_scores'], ref_labels=pred_dicts[0]['pred_labels']
            # )
            #
            # mlab.show(stop=True)

    logger.info('Demo done.')
コード例 #13
0
ファイル: demo.py プロジェクト: Gltina/OpenPCDet
def main():
    args, cfg = parse_config()
    logger = common_utils.create_logger()
    logger.info(
        '-----------------Quick Demo of OpenPCDet-------------------------')
    demo_dataset = DemoDataset(dataset_cfg=cfg.DATA_CONFIG,
                               class_names=cfg.CLASS_NAMES,
                               training=False,
                               root_path=Path(args.data_path),
                               ext=args.ext,
                               logger=logger)
    logger.info(f'Total number of samples: \t{len(demo_dataset)}')
    data_name_list = demo_dataset.sample_file_list
    # print(data_name_list)
    print('evaluation data size=', len(data_name_list))

    model = build_network(model_cfg=cfg.MODEL,
                          num_class=len(cfg.CLASS_NAMES),
                          dataset=demo_dataset)
    model.load_params_from_file(filename=args.ckpt, logger=logger, to_cpu=True)
    model.cuda()
    model.eval()

    with torch.no_grad():
        for idx, data_dict in enumerate(demo_dataset):
            # logger.info(f'Visualized sample index: \t{idx + 1}')
            logger.info(f'Detecte sample: \t{data_name_list[idx]}')
            data_dict = demo_dataset.collate_batch([data_dict])
            load_data_to_gpu(data_dict)
            pred_dicts, _ = model.forward(data_dict)

            print(pred_dicts)
            # print(data_dict)
            # print(type(pred_dicts[0]['pred_boxes']))
            # print(pred_dicts[0]['pred_boxes'])
            res = pred_dicts[0]['pred_boxes'].cpu().numpy().round(8)
            save_filename = str(data_name_list[idx])
            np.savetxt('evaluation/' +
                       save_filename[save_filename.rfind('/') + 1:].replace(
                           '.bin', '.txt'),
                       res,
                       fmt='%.08f')
            # test_f.writelines(pred_dicts[0]['pred_boxes'])

            V.draw_scenes(points=data_dict['points'][:, 1:],
                          ref_boxes=pred_dicts[0]['pred_boxes'],
                          ref_scores=pred_dicts[0]['pred_scores'],
                          ref_labels=pred_dicts[0]['pred_labels'])
            mlab.show(stop=True)

    logger.info('Demo done.')
コード例 #14
0
ファイル: demo.py プロジェクト: barryhe/OpenPCDet
def main():
    args, cfg = parse_config()
    logger = common_utils.create_logger()
    logger.info(
        '-----------------Quick Demo of OpenPCDet-------------------------')
    demo_dataset = DemoDataset(dataset_cfg=cfg.DATA_CONFIG,
                               class_names=cfg.CLASS_NAMES,
                               training=False,
                               root_path=Path(args.data_path),
                               ext=args.ext,
                               logger=logger)
    logger.info(f'Total number of samples: \t{len(demo_dataset)}')

    # display = Display(visible=0, size =(1280, 1024))
    # display.start()

    model = build_network(model_cfg=cfg.MODEL,
                          num_class=len(cfg.CLASS_NAMES),
                          dataset=demo_dataset)
    model.load_params_from_file(filename=args.ckpt, logger=logger, to_cpu=True)
    model.cuda()
    model.eval()
    with torch.no_grad():
        for idx, data_dict in enumerate(demo_dataset):
            logger.info(f'Visualized sample index: \t{idx + 1}')
            data_dict = demo_dataset.collate_batch([data_dict])
            load_data_to_gpu(data_dict)
            pred_dicts, _ = model.forward(data_dict)

            #  V.draw_scenes(
            #      points=data_dict['points'][:, 1:], ref_boxes=pred_dicts[0]['pred_boxes'],
            #      ref_scores=pred_dicts[0]['pred_scores'], ref_labels=pred_dicts[0]['pred_labels']
            #  )
            boxes_file = open(args.save + '_boxes', 'wb')
            scores_file = open(args.save + '_scores', 'wb')
            labels_file = open(args.save + '_labels', 'wb')
            pickle.dump(pred_dicts[0]['pred_boxes'].cpu().numpy(),
                        boxes_file,
                        protocol=4)
            pickle.dump(pred_dicts[0]['pred_scores'].cpu().numpy(),
                        scores_file,
                        protocol=4)
            pickle.dump(pred_dicts[0]['pred_labels'].cpu().numpy(),
                        labels_file,
                        protocol=4)
            boxes_file.close()
            scores_file.close()
            labels_file.close()

    logger.info('Demo done.')
コード例 #15
0
    def predict(self, pointcloud):

        data_dict = self.preprocesiing.preprocess_pointcloud(pointcloud)

        with torch.no_grad():
            data_dict = self.preprocesiing.collate_batch([data_dict])
            load_data_to_gpu(data_dict)
            t1 = time.time()
            pred_dicts, _ = self.model.forward(data_dict)
            print(pred_dicts)
            t2 = time.time()
            print("3D Model time= ", t2 - t1)

            return pred_dicts
コード例 #16
0
def main():

    for sweep in [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]:
        lines = open(
            'cfgs/dataset_configs/nuscenes_dataset.yaml').read().splitlines()
        lines[4] = 'MAX_SWEEPS: ' + str(sweep)
        open('cfgs/dataset_configs/nuscenes_dataset.yaml',
             'w').write('\n'.join(lines))

        args, cfg = parse_config()
        logger = common_utils.create_logger()

        demo_dataset = NuScenesDataset(dataset_cfg=cfg.DATA_CONFIG,
                                       class_names=cfg.CLASS_NAMES,
                                       training=False,
                                       root_path=Path(args.data_path),
                                       logger=logger)

        model = build_network(model_cfg=cfg.MODEL,
                              num_class=len(cfg.CLASS_NAMES),
                              dataset=demo_dataset)
        model.load_params_from_file(filename=args.ckpt,
                                    logger=logger,
                                    to_cpu=True)
        model.cuda()
        model.eval()

        times = []

        for i in range(args.frames):
            with torch.no_grad():
                data_dict = demo_dataset[i]

                start = time.time()
                data_dict = demo_dataset.collate_batch([data_dict])
                load_data_to_gpu(data_dict)
                pred_dicts, _ = model.forward(data_dict)
                end = time.time()
                times.append(end - start)

        print("sweeps", sweep)
        print("min", 1 / min(times))
        print("1st_quantile", 1 / np.quantile(times, .25))
        print("median", 1 / statistics.median(times))
        print("1st_quantile", 1 / np.quantile(times, .75))
        print("max", 1 / max(times))
        print()
コード例 #17
0
def main():
    args, cfg = parse_config()
    logger = common_utils.create_logger()
    logger.info('-----------------Quick Demo of OpenPCDet-------------------------')
    demo_dataset = DemoDataset(
        dataset_cfg=cfg.DATA_CONFIG, class_names=cfg.CLASS_NAMES, training=False,
        root_path=Path(args.data_path), ext=args.ext, logger=logger
    )
    logger.info(f'Total number of samples: \t{len(demo_dataset)}')

    model = build_network(model_cfg=cfg.MODEL, num_class=len(cfg.CLASS_NAMES), dataset=demo_dataset)
    model.load_params_from_file(filename=args.ckpt, logger=logger, to_cpu=True)
    model.cuda()
    model.eval()
    avg_time = 0
    avg_fps = 0
    with torch.no_grad():
        for idx, data_dict in enumerate(demo_dataset):
            logger.info(f'Visualized sample index: {idx + 1}')
            data_dict = demo_dataset.collate_batch([data_dict])
            load_data_to_gpu(data_dict)
            start = time()
            pred_dicts, _ = model.forward(data_dict)
            end = time()
            time_forward = (end - start) * 1000
            if idx > 0:
                avg_time += time_forward
                avg_fps += 1000 / time_forward
            logger.info(f'Time in ms for sample index: {idx + 1} is {"{:.2f}".format(time_forward)} ms')
            logger.info(f'FPS for sample index: {idx + 1} is {"{:.2f}".format(1000 / time_forward)} frame per second')

            V.draw_scenes(
                points=data_dict['points'][:, 1:], ref_boxes=pred_dicts[0]['pred_boxes'],
                ref_scores=pred_dicts[0]['pred_scores'], ref_labels=pred_dicts[0]['pred_labels']
            )
            mlab.show(stop=True)

    avg_time /= len(demo_dataset) - 1
    avg_fps /= len(demo_dataset) - 1
    logger.info(f'Average Time in ms for {paper.type}: is {"{:.2f}".format(avg_time)} ms')
    logger.info(f'Average FPS for {paper.type}: is {"{:.2f}".format(avg_fps)} frame per second')
    logger.info('Demo done.')
コード例 #18
0
def main():
    args, cfg = parse_config()
    logger = common_utils.create_logger()  #logger记录日志
    logger.info(
        '-----------------Quick Demo of OpenPCDet-------------------------')
    #建立一个DemoDataset类,其中储存关于输入数据的所有信息,包含六个参数
    # dataset_cfg=cfg.DATA_CONFIG # 数据参数
    # 包含数据集 / 数据路径 / 信息路径 / 数据处理器 / 数据增强器等
    # class_names=cfg.CLASS_NAMES # 类别名
    # training=False # 是否训练
    # root_path=Path(args.data_path) # 数据路径
    # ext=args.ext # 扩展
    # logger=logger # 日志
    demo_dataset = DemoDataset(dataset_cfg=cfg.DATA_CONFIG,
                               class_names=cfg.CLASS_NAMES,
                               training=False,
                               root_path=Path(args.data_path),
                               ext=args.ext,
                               logger=logger)

    logger.info(f'Total number of samples: \t{len(demo_dataset)}')

    model = build_network(model_cfg=cfg.MODEL,
                          num_class=len(cfg.CLASS_NAMES),
                          dataset=demo_dataset)
    model.load_params_from_file(filename=args.ckpt, logger=logger, to_cpu=True)
    model.cuda()
    model.eval()
    with torch.no_grad():  #目的是使得其中的数据不需要计算梯度,也不会进行反向传播
        for idx, data_dict in enumerate(demo_dataset):
            logger.info(f'Visualized sample index: \t{idx + 1}')
            data_dict = demo_dataset.collate_batch([data_dict])
            load_data_to_gpu(data_dict)
            pred_dicts, _ = model.forward(data_dict)

            V.draw_scenes(points=data_dict['points'][:, 1:],
                          ref_boxes=pred_dicts[0]['pred_boxes'],
                          ref_scores=pred_dicts[0]['pred_scores'],
                          ref_labels=pred_dicts[0]['pred_labels'])
            mlab.show(stop=True)

    logger.info('Demo done.')
コード例 #19
0
    def run(self, points):
        t1 = time.time()
        print(f"input points shape: {points.shape}")
        num_features = 4  #kitti model
        #num_features = 5
        self.points = points.reshape([-1, num_features])

        input_dict = {
            'points': self.points,
            'frame_id': 0,
        }

        data_dict = self.demo_datasets.prepare_data(data_dict=input_dict)
        data_dict = self.demo_datasets.collate_batch([data_dict])
        load_data_to_gpu(data_dict)

        torch.cuda.synchronize()
        pred_dicts, _ = self.net.forward(data_dict)
        torch.cuda.synchronize()

        t2 = time.time()
        print(f"net inference cost time: {t2 - t1}")

        # pred = remove_low_score_nu(pred_dicts[0], 0.45)

        # 'vehicle', 'pedestrian', 'bicycle'
        # class_scores = [0.5, 0.20, 0.20, 0.50]
        class_scores = [0.5, 0.5, 0.5, 0.5, 0.3, 0.3, 0.3, 0.3, 0.3]
        pred = remove_low_score_ck(pred_dicts[0], class_scores)

        boxes_lidar = pred['pred_boxes'].detach().cpu().numpy()
        boxes_lidar = transform_to_original(boxes_lidar)
        scores = pred['pred_scores'].detach().cpu().numpy()
        types = pred['pred_labels'].detach().cpu().numpy()
        #print(f" pred boxes: { boxes_lidar }")
        print(f" pred labels: {types}")
        print(f" pred scores: {scores}")
        #print(pred_dicts)

        return scores, boxes_lidar, types
コード例 #20
0
def main():
    # 1 输入参数
    args, cfg = parse_config()  # cfg的参数在tools/cfg/kitti_models/pv-rcnn.yaml
    logger = common_utils.create_logger()
    logger.info(
        '-----------------Quick Demo of OpenPCDet-------------------------')
    demo_dataset = DemoDataset(dataset_cfg=cfg.DATA_CONFIG,
                               class_names=cfg.CLASS_NAMES,
                               training=False,
                               root_path=Path(args.data_path),
                               ext=args.ext,
                               logger=logger)
    logger.info(f'Total number of samples: \t{len(demo_dataset)}')

    # 2 调用的这些包就是pcdet/models/detectors下的各个py文件,
    model = build_network(model_cfg=cfg.MODEL,
                          num_class=len(cfg.CLASS_NAMES),
                          dataset=demo_dataset)
    # 3 参数加载
    model.load_params_from_file(filename=args.ckpt, logger=logger, to_cpu=True)
    # cuda( ) 和 eval( ) 都是数据处理
    model.cuda()
    model.eval()
    with torch.no_grad():
        for idx, data_dict in enumerate(demo_dataset):
            logger.info(f'Visualized sample index: \t{idx + 1}')  # 样本数
            # 4. collate_batch
            data_dict = demo_dataset.collate_batch([data_dict])
            load_data_to_gpu(data_dict)  # 传递数据给gpu的
            pred_dicts, _ = model.forward(
                data_dict
            )  #  在神经网络中向前传递数据data_dict,得到预测数据pred_dicts     定位到forward,因为是PVRCNN类下的函数,先看__init__  /home/hcq/pointcloud/PCDet/pcdet/models/detectors/pv_rcnn.py
            # 可视化V
            V.draw_scenes(points=data_dict['points'][:, 1:],
                          ref_boxes=pred_dicts[0]['pred_boxes'],
                          ref_scores=pred_dicts[0]['pred_scores'],
                          ref_labels=pred_dicts[0]['pred_labels'])
            mlab.show(stop=True)

    logger.info('Demo done.')
コード例 #21
0
ファイル: __init__.py プロジェクト: yy824/waymo-open-dataset
def run_model(**kwargs):
    """Run inference on the pre-loaded OpenPCDet library model.

  Args:
    **kwargs: One keyword argument per input data field from the evaluation
    script.

  Returns:
    Dict from string to numpy ndarray.
  """
    data_dict = _process_inputs(kwargs)

    with torch.no_grad():
        data_dict = dataset_processor.collate_batch([data_dict])
        load_data_to_gpu(data_dict)
        pred_dicts, _ = model.forward(data_dict)
        # Rename the outputs to the format expected by the evaluation script.
        return {
            'boxes': pred_dicts[0]['pred_boxes'].cpu().numpy(),
            'scores': pred_dicts[0]['pred_scores'].cpu().numpy(),
            'classes': pred_dicts[0]['pred_labels'].cpu().numpy()
        }
コード例 #22
0
    def run(self, points):
        t_t = time.time()
        print(f"input points shape: {points.shape}")
        num_features = 4
        self.points = points.reshape([-1, num_features])
        #print("points", self.points)

        timestamps = np.zeros((len(self.points), 1))
        self.points = np.append(self.points, timestamps, axis=1)
        self.points[:, 0] += movelidarcenter
        #print("points2", self.points)

        input_dict = {
            'points': self.points,
            'frame_id': 0,
        }

        data_dict = self.demo_dataset.prepare_data(data_dict=input_dict)
        data_dict = self.demo_dataset.collate_batch([data_dict])
        load_data_to_gpu(data_dict)

        torch.cuda.synchronize()
        t = time.time()

        pred_dicts, _ = self.net.forward(data_dict)

        torch.cuda.synchronize()
        print(f"inference time: {time.time() - t}")

        boxes_lidar = pred_dicts[0]["pred_boxes"].detach().cpu().numpy()
        scores = pred_dicts[0]["pred_scores"].detach().cpu().numpy()
        types = pred_dicts[0]["pred_labels"].detach().cpu().numpy()

        # print(f" pred boxes: { boxes_lidar }")
        # print(f" pred_scores: { scores }")
        # print(f" pred_labels: { types }")

        return scores, boxes_lidar, types
コード例 #23
0
def main():
    args, cfg = parse_config()
    logger = common_utils.create_logger()
    logger.info(
        '-----------------Quick Inference of OpenPCDet-------------------------'
    )
    demo_dataset = DemoDataset(dataset_cfg=cfg.DATA_CONFIG,
                               class_names=cfg.CLASS_NAMES,
                               training=False,
                               root_path=Path(args.data_path),
                               ext=args.ext,
                               logger=logger)
    logger.info(f'Total number of samples: \t{len(demo_dataset)}')

    model = build_network(model_cfg=cfg.MODEL,
                          num_class=len(cfg.CLASS_NAMES),
                          dataset=demo_dataset)
    model.load_params_from_file(filename=args.ckpt, logger=logger, to_cpu=True)
    model.cuda()
    model.eval()
    with torch.no_grad():
        for idx, data_dict in enumerate(demo_dataset):
            logger.info(f'Run inference of sample index: \t{idx + 1}')
            data_dict = demo_dataset.collate_batch([data_dict])
            load_data_to_gpu(data_dict)
            pred_dicts, recall_dicts, batch_dict = model.forward(data_dict)

            #visualization
            if args.vis:
                V.visualize_voxel_prediction(batch_dict)
            #evaluate point predictions
            if args.point:
                E.save_prediction_point_argoverse(batch_dict,
                                                  save_gt=args.save_gt)

    logger.info('Quick inference done.')
コード例 #24
0
    def run(self, points, calib, image_shape):
        t_t = time.time()
        print(f"input points shape: {points.shape}")
        num_features = 4
        self.points = points.reshape([-1, num_features])
        #print("points", self.points)

        timestamps = np.zeros((len(self.points), 1))
        self.points = np.append(self.points, timestamps, axis=1)
        self.points[:, 0] += movelidarcenter
        #print("points2", self.points)

        input_dict = {
            'points': self.points,
            'frame_id': 0,
        }

        data_dict = self.demo_dataset.prepare_data(data_dict=input_dict)
        data_dict = self.demo_dataset.collate_batch([data_dict])
        load_data_to_gpu(data_dict)

        torch.cuda.synchronize()
        t = time.time()

        pred_dicts, _ = self.net.forward(data_dict)

        torch.cuda.synchronize()
        print(f"inference time: {time.time() - t}")

        boxes_lidar = pred_dicts[0]["pred_boxes"].detach().cpu().numpy()
        scores = pred_dicts[0]["pred_scores"].detach().cpu().numpy()
        types = pred_dicts[0]["pred_labels"].detach().cpu().numpy()

        # print(f" pred boxes: { boxes_lidar }")
        # print(f" pred_scores: { scores }")
        # print(f" pred_labels: { types }")

        pred_boxes = boxes_lidar
        pred_dict = self.get_template_prediction(scores.shape[0])
        if scores.shape[0] == 0:
            return pred_dict

        #calib = get_calib(sample_idx)
        #P2 = np.concatenate([calib.P2, np.array([[0., 0., 0., 1.]])], axis=0)
        #R0_4x4 = np.zeros([4, 4], dtype=calib.R0.dtype)
        #R0_4x4[3, 3] = 1.
        #R0_4x4[:3, :3] = calib.R0
        #V2C_4x4 = np.concatenate([calib.V2C, np.array([[0., 0., 0., 1.]])], axis=0)
        #calib = {'P2': P2, 'R0_rect': R0_4x4, 'Tr_velo_to_cam': V2C_4x4}
        #calib = input_dict['calib'][batch_index]

        #image_shape = input_dict['image_shape'][batch_index]
        pred_boxes_camera = box_utils.boxes3d_lidar_to_kitti_camera(
            pred_boxes, calib)
        pred_boxes_img = box_utils.boxes3d_kitti_camera_to_imageboxes(
            pred_boxes_camera, calib, image_shape=image_shape)

        pred_dict['name'] = np.array(cfg.CLASS_NAMES)[types - 1]
        pred_dict['alpha'] = -np.arctan2(
            -pred_boxes[:, 1], pred_boxes[:, 0]) + pred_boxes_camera[:, 6]
        pred_dict['bbox'] = pred_boxes_img
        pred_dict['dimensions'] = pred_boxes_camera[:, 3:6]
        pred_dict['location'] = pred_boxes_camera[:, 0:3]
        pred_dict['rotation_y'] = pred_boxes_camera[:, 6]
        pred_dict['score'] = scores
        pred_dict['boxes_lidar'] = pred_boxes

        return pred_dict
コード例 #25
0
ファイル: eval_utils.py プロジェクト: dingmyu/OpenPCDet
def eval_one_epoch(cfg,
                   model,
                   dataloader,
                   epoch_id,
                   logger,
                   dist_test=False,
                   save_to_file=False,
                   result_dir=None):
    result_dir.mkdir(parents=True, exist_ok=True)

    final_output_dir = result_dir / 'final_result' / 'data'
    if save_to_file:
        final_output_dir.mkdir(parents=True, exist_ok=True)

    metric = {
        'gt_num': 0,
    }
    for cur_thresh in cfg.MODEL.POST_PROCESSING.RECALL_THRESH_LIST:
        metric['recall_roi_%s' % str(cur_thresh)] = 0
        metric['recall_rcnn_%s' % str(cur_thresh)] = 0

    dataset = dataloader.dataset
    class_names = dataset.class_names
    det_annos = []

    logger.info('*************** EPOCH %s EVALUATION *****************' %
                epoch_id)
    if dist_test:
        num_gpus = torch.cuda.device_count()
        local_rank = cfg.LOCAL_RANK % num_gpus
        model = torch.nn.parallel.DistributedDataParallel(
            model, device_ids=[local_rank], broadcast_buffers=False)
    model.eval()

    if cfg.LOCAL_RANK == 0:
        progress_bar = tqdm.tqdm(total=len(dataloader),
                                 leave=True,
                                 desc='eval',
                                 dynamic_ncols=True)
    start_time = time.time()
    for i, batch_dict in enumerate(dataloader):
        load_data_to_gpu(batch_dict)
        with torch.no_grad():
            pred_dicts, ret_dict = model(batch_dict)
        disp_dict = {}

        statistics_info(cfg, ret_dict, metric, disp_dict)
        annos = dataset.generate_prediction_dicts(
            batch_dict,
            pred_dicts,
            class_names,
            output_path=final_output_dir if save_to_file else None)
        det_annos += annos
        if cfg.LOCAL_RANK == 0:
            progress_bar.set_postfix(disp_dict)
            progress_bar.update()

    if cfg.LOCAL_RANK == 0:
        progress_bar.close()

    if dist_test:
        rank, world_size = common_utils.get_dist_info()
        det_annos = common_utils.merge_results_dist(det_annos,
                                                    len(dataset),
                                                    tmpdir=result_dir /
                                                    'tmpdir')
        metric = common_utils.merge_results_dist([metric],
                                                 world_size,
                                                 tmpdir=result_dir / 'tmpdir')

    logger.info('*************** Performance of EPOCH %s *****************' %
                epoch_id)
    sec_per_example = (time.time() - start_time) / len(dataloader.dataset)
    logger.info('Generate label finished(sec_per_example: %.4f second).' %
                sec_per_example)

    if cfg.LOCAL_RANK != 0:
        return {}

    ret_dict = {}
    if dist_test:
        for key, val in metric[0].items():
            for k in range(1, world_size):
                metric[0][key] += metric[k][key]
        metric = metric[0]

    gt_num_cnt = metric['gt_num']
    for cur_thresh in cfg.MODEL.POST_PROCESSING.RECALL_THRESH_LIST:
        cur_roi_recall = metric['recall_roi_%s' % str(cur_thresh)] / max(
            gt_num_cnt, 1)
        cur_rcnn_recall = metric['recall_rcnn_%s' % str(cur_thresh)] / max(
            gt_num_cnt, 1)
        logger.info('recall_roi_%s: %f' % (cur_thresh, cur_roi_recall))
        logger.info('recall_rcnn_%s: %f' % (cur_thresh, cur_rcnn_recall))
        ret_dict['recall/roi_%s' % str(cur_thresh)] = cur_roi_recall
        ret_dict['recall/rcnn_%s' % str(cur_thresh)] = cur_rcnn_recall

    total_pred_objects = 0
    for anno in det_annos:
        total_pred_objects += anno['name'].__len__()
    logger.info('Average predicted number of objects(%d samples): %.3f' %
                (len(det_annos), total_pred_objects / max(1, len(det_annos))))

    with open(result_dir / 'result.pkl', 'wb') as f:
        pickle.dump(det_annos, f)

    result_str, result_dict = dataset.evaluation(
        det_annos,
        class_names,
        eval_metric=cfg.MODEL.POST_PROCESSING.EVAL_METRIC,
        output_path=final_output_dir)

    logger.info(result_str)
    ret_dict.update(result_dict)

    with open(result_dir / 'ap_dict.pkl', 'wb') as f:
        pickle.dump(ret_dict, f)

    logger.info('Result is save to %s' % result_dir)
    logger.info('****************Evaluation done.*****************')
    return ret_dict
コード例 #26
0
def save_pseudo_label_epoch(model, val_loader, rank, leave_pbar, ps_label_dir,
                            cur_epoch):
    """
    Generate pseudo label with given model.

    Args:
        model: model to predict result for pseudo label
        val_loader: data_loader to predict pseudo label
        rank: process rank
        leave_pbar: tqdm bar controller
        ps_label_dir: dir to save pseudo label
        cur_epoch
    """
    val_dataloader_iter = iter(val_loader)
    total_it_each_epoch = len(val_loader)

    if rank == 0:
        pbar = tqdm.tqdm(total=total_it_each_epoch,
                         leave=leave_pbar,
                         desc='generate_ps_e%d' % cur_epoch,
                         dynamic_ncols=True)

    pos_ps_meter = common_utils.AverageMeter()
    ign_ps_meter = common_utils.AverageMeter()

    model.eval()

    for cur_it in range(total_it_each_epoch):
        try:
            target_batch = next(val_dataloader_iter)
        except StopIteration:
            target_dataloader_iter = iter(val_loader)
            target_batch = next(target_dataloader_iter)

        # generate gt_boxes for target_batch and update model weights
        with torch.no_grad():
            load_data_to_gpu(target_batch)
            pred_dicts, ret_dict = model(target_batch)

        pos_ps_batch, ign_ps_batch = save_pseudo_label_batch(
            target_batch,
            pred_dicts=pred_dicts,
            need_update=(cfg.SELF_TRAIN.get('MEMORY_ENSEMBLE', None)
                         and cfg.SELF_TRAIN.MEMORY_ENSEMBLE.ENABLED
                         and cur_epoch > 0))

        # log to console and tensorboard
        pos_ps_meter.update(pos_ps_batch)
        ign_ps_meter.update(ign_ps_batch)
        disp_dict = {
            'pos_ps_box':
            "{:.3f}({:.3f})".format(pos_ps_meter.val, pos_ps_meter.avg),
            'ign_ps_box':
            "{:.3f}({:.3f})".format(ign_ps_meter.val, ign_ps_meter.avg)
        }

        if rank == 0:
            pbar.update()
            pbar.set_postfix(disp_dict)
            pbar.refresh()

    if rank == 0:
        pbar.close()

    gather_and_dump_pseudo_label_result(rank, ps_label_dir, cur_epoch)
コード例 #27
0
def main():

    args, cfg = parse_config()
    logger = common_utils.create_logger()
    logger.info('-----------------Quick Demo of OpenPCDet-------------------------')

    demo_dataset = NuScenesDataset(
        dataset_cfg=cfg.DATA_CONFIG, class_names=cfg.CLASS_NAMES, training=False,
        root_path=Path(args.data_path), logger=logger
    )
    logger.info(f'Total number of samples: \t{len(demo_dataset)}')

    model = build_network(model_cfg=cfg.MODEL, num_class=len(cfg.CLASS_NAMES), dataset=demo_dataset)
    model.load_params_from_file(filename=args.ckpt, logger=logger, to_cpu=True)
    model.cuda()
    model.eval()
    start = time.time()
    with torch.no_grad():
        data_dict = demo_dataset[args.idx]
        print(type(data_dict))
        print(data_dict)
        
        logger.info(f'Visualized sample index: \t{args.idx}')
        data_dict = demo_dataset.collate_batch([data_dict])
        # print(type(data_dict))
        # print(data_dict)
        load_data_to_gpu(data_dict)
        pred_dicts, _ = model.forward(data_dict)
        # for bb in pred_dicts[0]['pred_boxes']:
        #     for x in bb:
        #         print(float(x), end="  ")
        #     print()

        # pred_dicts[0]['pred_boxes'][:,0] = 1
        # pred_dicts[0]['pred_boxes'][:,1] = 0
        # pred_dicts[0]['pred_boxes'][:,2] = 1
        # pred_dicts[0]['pred_boxes'][:,3] = 1
        # pred_dicts[0]['pred_boxes'][:,4] = 1
        # pred_dicts[0]['pred_boxes'][:,5] = 1
        # pred_dicts[0]['pred_boxes'][:,6] = 0
        
        # pred_dicts[0]['pred_boxes'] = pred_dicts[0]['pred_boxes'].cpu().numpy()
        # foo = np.zeros((len(pred_dicts[0]['pred_boxes']), 2), dtype=pred_dicts[0]['pred_boxes'].dtype)
        # pred_dicts[0]['pred_boxes'] = np.concatenate((pred_dicts[0]['pred_boxes'], foo), axis=1)


        # pred_dicts[0]['pred_boxes'][:,7] = 0
        # pred_dicts[0]['pred_boxes'][:,8] = 0

        mask = (pred_dicts[0]['pred_scores']>0.3).float()
        indices = torch.nonzero(mask)
        V.draw_scenes(
            points=data_dict['points'][:, 1:],
            ref_boxes=pred_dicts[0]['pred_boxes'][indices].reshape(-1, 9),
            ref_scores=pred_dicts[0]['pred_scores'][indices].reshape(-1), ref_labels=pred_dicts[0]['pred_labels'][indices].reshape(-1)
        )

        # mask = (pred_dicts[0]['pred_scores']>0.5).float()
        # indices = torch.nonzero(mask)
        # V.draw_scenes(
        #     points=data_dict['points'][:, 1:], ref_boxes=pred_dicts[0]['pred_boxes'][indices].reshape(-1, 7),
        #     ref_scores=pred_dicts[0]['pred_scores'][indices].reshape(-1), ref_labels=pred_dicts[0]['pred_labels'][indices].reshape(-1)
        # )


        # print(pred_dicts[0]['pred_boxes'][indices])

        # V.draw_scenes(
        #     points=data_dict['points'][:, 1:], ref_boxes=pred_dicts[0]['pred_boxes'],
        #     ref_scores=pred_dicts[0]['pred_scores'], ref_labels=pred_dicts[0]['pred_labels']
        # )

        mlab.show(stop=True)

    end = time.time()
    print(end-start)

    logger.info('Demo done.')
コード例 #28
0
def main():

    args, cfg = parse_config()

    curr_seq = args.seq_path.split("/")[-1]

    logger = common_utils.create_logger()
    logger.info(
        '-----------------Quick Demo of OpenPCDet-------------------------')
    demo_dataset = DemoDataset(dataset_cfg=cfg.DATA_CONFIG,
                               class_names=cfg.CLASS_NAMES,
                               training=False,
                               root_path=Path(args.seq_path),
                               ext=args.ext,
                               logger=logger)
    logger.info(f'Total number of samples: \t{len(demo_dataset)}')

    model = build_network(model_cfg=cfg.MODEL,
                          num_class=len(cfg.CLASS_NAMES),
                          dataset=demo_dataset)
    model.load_params_from_file(filename=args.ckpt, logger=logger, to_cpu=True)
    model.cuda()
    model.eval()

    # Removing existing csv file
    csv_file_path = '%s/%s.csv' % (args.output_dir, curr_seq)
    if os.path.exists(csv_file_path):
        os.remove(csv_file_path)

    # Loading the ground truth from kitti-odometry
    gt_path = "/".join(
        args.seq_path.split("/")[0:-2]) + "/label_02/" + curr_seq + ".txt"
    gt_data = np.genfromtxt(gt_path,
                            dtype=str)[:, [0, 2, 13, 14, 15, 10, 11, 12, 16]]

    gt_data = gt_data[np.logical_or(
        gt_data[:, 1] == 'Car',
        np.logical_or(gt_data[:,
                              1] == 'Cyclist', gt_data[:,
                                                       1] == 'Pedestrian')), :]
    gt_data = gt_data[:, [0, 2, 3, 4, 5, 6, 7, 8]]

    # Converting to floats
    gt_data = gt_data.astype(np.float)

    with torch.no_grad():
        for idx, data_dict in enumerate(demo_dataset):

            logger.info(f'Visualized sample index: \t{idx + 1}')
            data_dict = demo_dataset.collate_batch([data_dict])
            load_data_to_gpu(data_dict)
            pred_dicts, _ = model.forward(data_dict)

            # Creating output dir if it does not already exist
            Path(args.output_dir).mkdir(parents=True, exist_ok=True)

            relevant_gt_boxes = gt_data[gt_data[:, 0] == idx][:, 1:]

            data_ = {
                "data_dict": data_dict['points'][:, 1:].cpu().detach().numpy(),
                "pred_boxes":
                pred_dicts[0]["pred_boxes"].cpu().detach().numpy(),
                "pred_labels":
                pred_dicts[0]["pred_labels"].cpu().detach().numpy(),
                "pred_scores":
                pred_dicts[0]["pred_scores"].cpu().detach().numpy(),
                "gt_boxes": relevant_gt_boxes
            }

            with open('%s/curr_pickle_%s.pkl' % (args.output_dir, str(idx)),
                      'wb+') as f:
                pkl.dump(data_, f)

            # Writing to text file in kitti format for tracking step
            frame_data = np.zeros((data_["pred_labels"].shape[0], 15))
            frame_data[:, 0] = idx  # Frame ID
            frame_data[:, 1] = data_["pred_labels"]  # Labels
            frame_data[:, 2:6] = 0  # 2d bounding boxes
            frame_data[:, 6] = data_["pred_scores"]  # 2d bounding boxes
            frame_data[:, 7:10] = data_["pred_boxes"][:, 3:6]
            frame_data[:, 10:13] = data_["pred_boxes"][:, 0:3]
            frame_data[:, 13] = data_["pred_boxes"][:, -1]
            frame_data[:, 14] = 0  # Alpha

            with open('%s/%s.csv' % (args.output_dir, curr_seq), 'a') as f:
                np.savetxt(f, frame_data, delimiter=",")
コード例 #29
0
ファイル: eval_utils.py プロジェクト: kob51/vlr-final-project
def eval_one_epoch(cfg,
                   model,
                   dataloader,
                   epoch_id,
                   logger,
                   dist_test=False,
                   save_to_file=False,
                   result_dir=None):
    result_dir.mkdir(parents=True, exist_ok=True)

    final_output_dir = result_dir / 'final_result' / 'data'
    if save_to_file:
        final_output_dir.mkdir(parents=True, exist_ok=True)

    metric = {
        'gt_num': 0,
    }
    for cur_thresh in cfg.MODEL.POST_PROCESSING.RECALL_THRESH_LIST:
        metric['recall_roi_%s' % str(cur_thresh)] = 0
        metric['recall_rcnn_%s' % str(cur_thresh)] = 0

    dataset = dataloader.dataset
    class_names = dataset.class_names
    det_annos = []

    logger.info('*************** EPOCH %s EVALUATION *****************' %
                epoch_id)
    if dist_test:
        num_gpus = torch.cuda.device_count()
        local_rank = cfg.LOCAL_RANK % num_gpus
        model = torch.nn.parallel.DistributedDataParallel(
            model, device_ids=[local_rank], broadcast_buffers=False)
    model.eval()

    if cfg.LOCAL_RANK == 0:
        progress_bar = tqdm.tqdm(total=len(dataloader),
                                 leave=True,
                                 desc='eval',
                                 dynamic_ncols=True)

    start_time = time.time()
    run_time = 0
    query_batch = {}
    target_batch = {}
    # pred_dicts= {}
    # ret_dict = {}
    # print("FIRST FOWARD PASS")
    for i, batch_dict in enumerate(dataloader):
        # print("BATCH DICT",int(batch_dict['frame_id']))
        run_start_time = time.time()
        load_data_to_gpu(batch_dict)

        if int(batch_dict['frame_id']) == 451:
            break

        # print("BATCH FRAME ID", batch_dict['frame_id'])
        if int(batch_dict['frame_id']) == 27:
            # print("TARGET LINE PASSED")
            target_batch = batch_dict.copy()
            # print("SIZE",len(target_batch))
        if int(batch_dict['frame_id']) == 450:
            # print("QUERY LINE PASSED")
            query_batch = batch_dict.copy()
            # print("SIZE",len(query_batch))

        # print("PRE MODEL RUN")
        if len(query_batch) != 0 and len(target_batch) != 0:
            # print("query_batch", query_batch.keys())
            print("query_batch gt boxes", query_batch['gt_boxes'])
            print("query_batch voxels", query_batch['voxels'])
            print("query_batch voxel coords", query_batch['voxel_coords'])
            with torch.no_grad():
                # print("query",len(query_batch))
                # print("target",len(target_batch))
                pred_dicts, ret_dict = model([query_batch, target_batch])
            # pred_dicts, ret_dict = model(batch_dict)

            print(pred_dicts)
            # print("FORWARD PASS COMPLETE")
            disp_dict = {}
            run_end_time = time.time()
            run_duration = run_end_time - run_start_time
            run_time += run_duration

            statistics_info(cfg, ret_dict, metric, disp_dict)
            annos = dataset.generate_prediction_dicts(
                batch_dict,
                pred_dicts,
                class_names,
                output_path=final_output_dir if save_to_file else None)
            det_annos += annos
            if cfg.LOCAL_RANK == 0:
                progress_bar.set_postfix(disp_dict)
                progress_bar.update()

    if cfg.LOCAL_RANK == 0:
        progress_bar.close()

    if dist_test:
        rank, world_size = common_utils.get_dist_info()
        det_annos = common_utils.merge_results_dist(det_annos,
                                                    len(dataset),
                                                    tmpdir=result_dir /
                                                    'tmpdir')
        metric = common_utils.merge_results_dist([metric],
                                                 world_size,
                                                 tmpdir=result_dir / 'tmpdir')
    else:
        world_size = 1
    logger.info('*************** Performance of EPOCH %s *****************' %
                epoch_id)

    logger.info('Run time per sample: %.4f second.' %
                (run_time / (len(dataloader.dataset) / world_size)))

    sec_per_example = (time.time() - start_time) / (len(dataloader.dataset) /
                                                    world_size)
    logger.info('Generate label finished(sec_per_example: %.4f second).' %
                sec_per_example)

    if cfg.LOCAL_RANK != 0:
        return {}

    ret_dict = {}
    if dist_test:
        for key, val in metric[0].items():
            for k in range(1, world_size):
                metric[0][key] += metric[k][key]
        metric = metric[0]

    gt_num_cnt = metric['gt_num']
    for cur_thresh in cfg.MODEL.POST_PROCESSING.RECALL_THRESH_LIST:
        cur_roi_recall = metric['recall_roi_%s' % str(cur_thresh)] / max(
            gt_num_cnt, 1)
        cur_rcnn_recall = metric['recall_rcnn_%s' % str(cur_thresh)] / max(
            gt_num_cnt, 1)
        logger.info('recall_roi_%s: %f' % (cur_thresh, cur_roi_recall))
        logger.info('recall_rcnn_%s: %f' % (cur_thresh, cur_rcnn_recall))
        ret_dict['recall/roi_%s' % str(cur_thresh)] = cur_roi_recall
        ret_dict['recall/rcnn_%s' % str(cur_thresh)] = cur_rcnn_recall

    total_pred_objects = 0
    for anno in det_annos:
        total_pred_objects += anno['name'].__len__()
    logger.info('Average predicted number of objects(%d samples): %.3f' %
                (len(det_annos), total_pred_objects / max(1, len(det_annos))))

    with open(result_dir / 'result.pkl', 'wb') as f:
        pickle.dump(det_annos, f)

    # result_str, result_dict = dataset.evaluation(
    #     det_annos, class_names,
    #     eval_metric=cfg.MODEL.POST_PROCESSING.EVAL_METRIC,
    #     output_path=final_output_dir
    # )

    # logger.info(result_str)
    # ret_dict.update(result_dict)

    # logger.info('Result is save to %s' % result_dir)
    logger.info('****************Evaluation done.*****************')
    return ret_dict
コード例 #30
0
def eval_one_epoch_for_semantic(cfg,
                                model,
                                dataloader,
                                epoch_id,
                                logger,
                                dist_test=False,
                                save_to_file=False,
                                result_dir=None):
    result_dir.mkdir(parents=True, exist_ok=True)

    final_output_dir = result_dir / 'final_result' / 'data'
    if save_to_file:
        final_output_dir.mkdir(parents=True, exist_ok=True)

    dataset = dataloader.dataset
    class_names = dataset.class_names
    det_annos = []

    logger.info('*************** EPOCH %s EVALUATION *****************' %
                epoch_id)
    if dist_test:
        num_gpus = torch.cuda.device_count()
        local_rank = cfg.LOCAL_RANK % num_gpus
        model = torch.nn.parallel.DistributedDataParallel(
            model, device_ids=[local_rank], broadcast_buffers=False)
    model.eval()

    if cfg.LOCAL_RANK == 0:
        progress_bar = tqdm.tqdm(total=len(dataloader),
                                 leave=True,
                                 desc='eval',
                                 dynamic_ncols=True)
    start_time = time.time()
    preds = []
    targets = []
    for i, batch_dict in enumerate(dataloader):
        load_data_to_gpu(batch_dict)
        with torch.no_grad():
            batch_dict = model(batch_dict)

        if 'image_seg_label' in batch_dict:
            target = batch_dict['image_seg_label'].cpu().numpy().astype(
                np.int32)
        else:
            target = [None] * batch_dict['batch_size']
        pred = batch_dict['pred_image_seg'].cpu().numpy()
        pred_copy = pred.copy()
        pred = np.argmax(pred, axis=1).astype(np.int32)
        preds.extend([pred[b] for b in range(batch_dict['batch_size'])])
        targets.extend([target[b] for b in range(batch_dict['batch_size'])])

        if save_to_file:
            for b in range(batch_dict['batch_size']):
                filename = final_output_dir / f'{batch_dict["sample_id"][b]}.npy'
                np.save(filename, pred_copy[b].astype(np.float32))

        disp_dict = {}

        if cfg.LOCAL_RANK == 0:
            progress_bar.set_postfix(disp_dict)
            progress_bar.update()

    if cfg.LOCAL_RANK == 0:
        progress_bar.close()

    # if dist_test:
    # rank, world_size = common_utils.get_dist_info()
    # det_annos = common_utils.merge_results_dist(det_annos, len(dataset), tmpdir=result_dir / 'tmpdir')
    # metric = common_utils.merge_results_dist([metric], world_size, tmpdir=result_dir / 'tmpdir')

    logger.info('*************** Performance of EPOCH %s *****************' %
                epoch_id)
    sec_per_example = (time.time() - start_time) / len(dataloader.dataset)
    logger.info('Generate label finished(sec_per_example: %.4f second).' %
                sec_per_example)

    if cfg.LOCAL_RANK != 0:
        return {}

    ret_dict = {}
    # if dist_test:
    #     for key, val in metric[0].items():
    #         for k in range(1, world_size):
    #             metric[0][key] += metric[k][key]
    #     metric = metric[0]

    # gt_num_cnt = metric['gt_num']

    with open(result_dir / 'result.pkl', 'wb') as f:
        pickle.dump(det_annos, f)

    result_str, result_dict = dataset.evaluation(
        preds,
        targets,
    )

    logger.info(result_str)
    ret_dict.update(result_dict)

    logger.info('Result is save to %s' % result_dir)
    logger.info('****************Evaluation done.*****************')
    return ret_dict