コード例 #1
0
    def transform_grid(self, voxel_grid, grid_to_lidar, lidar_to_cam,
                       cam_to_img):
        """
        Transforms voxel sampling grid into frustum sampling grid
        Args:
            voxel_grid [torch.Tensor(B, X, Y, Z, 3)]: Voxel sampling grid
            grid_to_lidar [torch.Tensor(4, 4)]: Voxel grid to LiDAR unprojection matrix
            lidar_to_cam [torch.Tensor(B, 4, 4)]: LiDAR to camera frame transformation
            cam_to_img [torch.Tensor(B, 3, 4)]: Camera projection matrix
        Returns:
            frustum_grid [torch.Tensor(B, X, Y, Z, 3)]: Frustum sampling grid
        """
        # B是相机数目
        B = lidar_to_cam.shape[0]

        # Create transformation matricies
        V_G = grid_to_lidar  # Voxel Grid -> LiDAR (4, 4)
        C_V = lidar_to_cam  # LiDAR -> Camera (B, 4, 4)
        I_C = cam_to_img  # Camera -> Image (B, 3, 4)
        trans = C_V @ V_G  # grid转到lidar实际坐标,再转到相机坐标再转到像素。主要是为了grid和像素对应。

        # Reshape to match dimensions
        trans = trans.reshape(B, 1, 1, 4, 4)
        voxel_grid = voxel_grid.repeat_interleave(repeats=B, dim=0)

        # Transform to camera frame
        #camera_grid shape: B X Y Z 3
        camera_grid = kornia.transform_points(trans_01=trans,
                                              points_1=voxel_grid)

        # Project to image
        I_C = I_C.reshape(B, 1, 1, 3, 4)
        # image_grid shape: B X Y Z 2; image_depth B X Y Z 1
        image_grid, image_depths = transform_utils.project_to_image(
            project=I_C, points=camera_grid)

        # Convert depths to depth bins
        # Image_depths.shape: B X Y Z 1  落在哪个bin
        image_depths = depth_utils.bin_depths(depth_map=image_depths,
                                              **self.disc_cfg)

        # Stack to form frustum grid
        image_depths = image_depths.unsqueeze(-1)
        # frustum_grid = B X Y Z 3
        frustum_grid = torch.cat((image_grid, image_depths), dim=-1)
        return frustum_grid
コード例 #2
0
    def transform_grid(self, voxel_grid, grid_to_lidar, lidar_to_cam,
                       cam_to_img):
        """
        Transforms voxel sampling grid into frustum sampling grid
        Args:
            grid: (B, X, Y, Z, 3), Voxel sampling grid
            grid_to_lidar: (4, 4), Voxel grid to LiDAR unprojection matrix
            lidar_to_cam: (B, 4, 4), LiDAR to camera frame transformation
            cam_to_img: (B, 3, 4), Camera projection matrix
        Returns:
            frustum_grid: (B, X, Y, Z, 3), Frustum sampling grid
        """
        B = lidar_to_cam.shape[0]

        # Create transformation matricies
        V_G = grid_to_lidar  # Voxel Grid -> LiDAR (4, 4)
        C_V = lidar_to_cam  # LiDAR -> Camera (B, 4, 4)
        I_C = cam_to_img  # Camera -> Image (B, 3, 4)
        trans = C_V @ V_G

        # Reshape to match dimensions
        trans = trans.reshape(B, 1, 1, 4, 4)
        voxel_grid = voxel_grid.repeat_interleave(repeats=B, dim=0)

        # Transform to camera frame
        camera_grid = kornia.transform_points(trans_01=trans,
                                              points_1=voxel_grid)

        # Project to image
        I_C = I_C.reshape(B, 1, 1, 3, 4)
        image_grid, image_depths = transform_utils.project_to_image(
            project=I_C, points=camera_grid)

        # Convert depths to depth bins
        image_depths = transform_utils.bin_depths(depth_map=image_depths,
                                                  **self.disc_cfg)

        # Stack to form frustum grid
        image_depths = image_depths.unsqueeze(-1)
        frustum_grid = torch.cat((image_grid, image_depths), dim=-1)
        return frustum_grid