コード例 #1
0
def do_validate(conf, model, optimizer, criterion, scheduler, metrics,
                data_loader):
    """Evaluate the model on the test dataset and save to the checkpoint."""
    # wait until the whole group enters this function, and then evaluate.
    print("Enter validation phase.")
    performance = validate(conf, model, optimizer, criterion, scheduler,
                           metrics, data_loader)

    # remember best performance and display the val info.
    scheduler.best_tracker.update(performance[0], scheduler.epoch_)
    dispaly_best_test_stat(conf, scheduler)

    # save to the checkpoint.
    if not conf.train_fast:
        save_to_checkpoint(
            conf,
            {
                "arch": conf.arch,
                "current_epoch": scheduler.epoch,
                "local_index": scheduler.local_index,
                "best_perf": scheduler.best_tracker.best_perf,
                "optimizer": optimizer.state_dict(),
                "state_dict": model.state_dict(),
            },
            scheduler.best_tracker.is_best,
            dirname=conf.checkpoint_dir,
            filename="checkpoint.pth.tar",
            save_all=conf.save_all_models,
        )
    print("Finished validation.")
コード例 #2
0
def do_validation(
    conf,
    coordinator,
    model,
    criterion,
    metrics,
    data_loaders,
    performance=None,
    label=None,
):
    """Evaluate the model on the test dataset and save to the checkpoint."""
    # wait until the whole group enters this function, and then evaluate.
    conf.logger.log(f"Master enters the validation phase.")
    if performance is None:
        performance = get_avg_perf_on_dataloaders(
            conf, coordinator, model, criterion, metrics, data_loaders, label
        )

    # remember best performance and display the val info.
    coordinator.update_perf(performance)
    dispaly_best_test_stat(conf, coordinator)

    # save to the checkpoint.
    conf.logger.log(f"Master finished the validation.")
    if not conf.train_fast:
        checkpoint.save_to_checkpoint(
            conf,
            {
                "arch": conf.arch,
                "current_comm_round": conf.graph.comm_round,
                "best_perf": coordinator.best_trackers["top1"].best_perf,
                "state_dict": model.state_dict(),
            },
            coordinator.best_trackers["top1"].is_best,
            dirname=conf.checkpoint_root,
            filename="checkpoint.pth.tar",
            save_all=conf.save_all_models,
        )
        conf.logger.log(f"Master saved to checkpoint.")