コード例 #1
0
def extract_axiom_plan(task, goals, negative_from_name, static_state=set()):
    import pddl_to_prolog
    import build_model
    import instantiate
    # TODO: only reinstantiate the negative axioms
    axioms_from_name = get_derived_predicates(task.axioms)
    derived_goals = {l for l in goals if l.predicate in axioms_from_name}
    axiom_from_action = get_necessary_axioms(derived_goals, task.axioms, negative_from_name)
    if not axiom_from_action:
        return []
    conditions_from_predicate = defaultdict(set)
    for axiom, mapping in axiom_from_action.values():
        for literal in get_literals(axiom.condition):
            conditions_from_predicate[literal.predicate].add(literal.rename_variables(mapping))

    original_init = task.init
    original_actions = task.actions
    original_axioms = task.axioms
    # TODO: retrieve initial state based on if helpful
    task.init = {atom for atom in task.init if is_useful_atom(atom, conditions_from_predicate)}
    # TODO: store map from predicate to atom
    task.actions = axiom_from_action.keys()
    task.axioms = []
    # TODO: maybe it would just be better to drop the negative throughout this process until this end
    with Verbose(False):
        model = build_model.compute_model(pddl_to_prolog.translate(task))  # Changes based on init
    task.actions = original_actions
    task.axioms = original_axioms

    opt_facts = instantiate.get_fluent_facts(task, model) | (task.init - static_state)
    mock_fluent = MockSet(lambda item: (item.predicate in negative_from_name) or (item in opt_facts))
    instantiated_axioms = instantiate_necessary_axioms(model, static_state, mock_fluent, axiom_from_action)
    axiom_plan = extraction_helper(task.init, instantiated_axioms, derived_goals, negative_from_name)
    task.init = original_init
    return axiom_plan
コード例 #2
0
ファイル: reorder.py プロジェクト: miquelramirez/pddlstream
def replace_derived(task, negative_init, action_instances):
    import pddl_to_prolog
    import build_model
    import axiom_rules
    import pddl

    original_actions = task.actions
    original_init = task.init
    task.actions = []
    function_assignments = {f.fluent: f.expression for f in task.init
                            if isinstance(f, pddl.f_expression.FunctionAssignment)}
    task.init = (set(task.init) | {a.negate() for a in negative_init}) - set(function_assignments)
    for instance in action_instances:
        #axiom_plan = extract_axiom_plan(task, instance, negative_from_name={}) # TODO: refactor this

        # TODO: just instantiate task?
        with Verbose(False):
            model = build_model.compute_model(pddl_to_prolog.translate(task))  # Changes based on init
        # fluent_facts = instantiate.get_fluent_facts(task, model)
        fluent_facts = MockSet()
        instantiated_axioms = instantiate_axioms(model, task.init, fluent_facts)
        goal_list = [] # TODO: include the goal?
        with Verbose(False):  # TODO: helpful_axioms prunes axioms that are already true (e.g. not Unsafe)
            helpful_axioms, axiom_init, _ = axiom_rules.handle_axioms([instance], instantiated_axioms, goal_list)
        axiom_from_atom = get_achieving_axioms(task.init | negative_init | set(axiom_init), helpful_axioms)
        # negated_from_name=negated_from_name)
        axiom_plan = []
        extract_axioms(axiom_from_atom, instance.precondition, axiom_plan)

        substitute_derived(axiom_plan, instance)
        assert(is_applicable(task.init, instance))
        apply_action(task.init, instance)
    task.actions = original_actions
    task.init = original_init
コード例 #3
0
def extract_axiom_plan(task, action_instance, negative_from_name, static_state=set()):
    import pddl_to_prolog
    import build_model
    import axiom_rules
    import instantiate

    axioms_from_name = get_derived_predicates(task.axioms)
    derived_preconditions = {l for l in action_instance.precondition if l.predicate in axioms_from_name}
    nonderived_preconditions = {l for l in action_instance.precondition if l not in derived_preconditions}
    if not conditions_hold(task.init, nonderived_preconditions):
        return None

    axiom_from_action = get_necessary_axioms(action_instance, task.axioms, negative_from_name)
    if not axiom_from_action:
        return []
    conditions_from_predicate = defaultdict(set)
    for axiom, mapping in axiom_from_action.values():
        for literal in get_literals(axiom.condition):
            conditions_from_predicate[literal.predicate].add(literal.rename_variables(mapping))

    original_init = task.init
    original_actions = task.actions
    original_axioms = task.axioms
    task.init = {atom for atom in task.init if is_useful_atom(atom, conditions_from_predicate)}
    # TODO: store map from predicate to atom
    task.actions = axiom_from_action.keys()
    task.axioms = []
    # TODO: maybe it would just be better to drop the negative throughout this process until this end
    with Verbose(False):
        model = build_model.compute_model(pddl_to_prolog.translate(task))  # Changes based on init
    task.actions = original_actions
    task.axioms = original_axioms

    opt_facts = instantiate.get_fluent_facts(task, model) | (task.init - static_state)
    mock_fluent = MockSet(lambda item: (item.predicate in negative_from_name) or (item in opt_facts))
    instantiated_axioms = instantiate_necessary_axioms(model, static_state, mock_fluent, axiom_from_action)

    goal_list = []
    with Verbose(False):
        helpful_axioms, axiom_init, _ = axiom_rules.handle_axioms(
            [action_instance], instantiated_axioms, goal_list)
    axiom_init = set(axiom_init)
    axiom_effects = {axiom.effect for axiom in helpful_axioms}
    #assert len(axiom_effects) == len(axiom_init)
    for pre in list(derived_preconditions) + list(axiom_effects):
        if (pre not in axiom_init) and (pre.negate() not in axiom_init):
            axiom_init.add(pre.positive().negate())
    axiom_from_atom = get_achieving_axioms(task.init | axiom_init, helpful_axioms, negative_from_name)
    axiom_plan = []  # Could always add all conditions
    success = extract_axioms(axiom_from_atom, derived_preconditions, axiom_plan, negative_from_name)
    task.init = original_init
    #if not success:
    #    return None
    return axiom_plan
コード例 #4
0
def explore(task):
    if DEBUG:
        print("DEBUG: Exploring Task Step [1]: create logic program 'prog'")
    prog = pddl_to_prolog.translate(task)
    #     prog.dump()
    if DEBUG: print("DEBUG: Exploring Task Step [2]: build model 'model'")
    model = build_model.compute_model(prog)
    #     print("instantiate.explore task dumps task")
    #     task.dump()
    if DEBUG: print("DEBUG: Exploring Task Step [3]: instantiate model")
    with timers.timing("Completing instantiation"):
        return instantiate(task, model)
コード例 #5
0
def explore(task, max_num_actions, pg_generator):
    if pg_generator is None:
        prog = pddl_to_prolog.translate(task)
        model = build_model.compute_model(prog)
        with timers.timing("Completing instantiation"):
            return instantiate(task, model)
    else:
        while True:
            relaxed_reachable, fluent_facts, instantiated_actions, reachable_action_parameters = next(
                pg_generator)
            if len(instantiated_actions) >= max_num_actions:
                return (relaxed_reachable, fluent_facts, instantiated_actions,
                        [], reachable_action_parameters)
コード例 #6
0
ファイル: build_model.py プロジェクト: gergia/antlab
        return result

    def popped_elements(self):
        return queue.queue[:self.queue_pos]


def compute_model(prog):
    rules = convert_rules(prog)
    unifier = Unifier(rules)
    # unifier.dump()
    queue = Queue([fact.atom for fact in prog.facts])
    print "Starting instantiation [%d rules]..." % len(rules)
    while queue:
        next_atom = queue.pop()
        matches = unifier.unify(next_atom)
        for rule, cond_index in matches:
            rule.update_index(next_atom, cond_index)
            rule.fire(next_atom, cond_index, queue.push)
    return queue.queue


if __name__ == "__main__":
    import pddl_to_prolog
    print "Parsing..."
    task = pddl.open()
    print "Writing rules..."
    prog = pddl_to_prolog.translate(task)
    print "Computing model..."
    for atom in compute_model(prog):
        print atom
コード例 #7
0
ファイル: relaxed.py プロジェクト: jingxixu/pddlstream
def recover_stream_plan(evaluations,
                        goal_expression,
                        domain,
                        stream_results,
                        action_plan,
                        negative,
                        unit_costs,
                        optimize=True):
    import pddl_to_prolog
    import build_model
    import pddl
    import axiom_rules
    import instantiate
    # Universally quantified conditions are converted into negative axioms
    # Existentially quantified conditions are made additional preconditions
    # Universally quantified effects are instantiated by doing the cartesian produce of types (slow)
    # Added effects cancel out removed effects

    opt_evaluations = evaluations_from_stream_plan(evaluations, stream_results)
    opt_task = task_from_domain_problem(
        domain,
        get_problem(opt_evaluations, goal_expression, domain, unit_costs))
    real_task = task_from_domain_problem(
        domain, get_problem(evaluations, goal_expression, domain, unit_costs))
    function_assignments = {
        fact.fluent: fact.expression
        for fact in opt_task.init  # init_facts
        if isinstance(fact, pddl.f_expression.FunctionAssignment)
    }
    type_to_objects = instantiate.get_objects_by_type(opt_task.objects,
                                                      opt_task.types)
    results_from_head = get_results_from_head(opt_evaluations)

    action_instances = []
    for name, args in action_plan:  # TODO: negative atoms in actions
        candidates = []
        for action in opt_task.actions:
            if action.name != name:
                continue
            if len(action.parameters) != len(args):
                raise NotImplementedError(
                    'Existential quantifiers are not currently '
                    'supported in preconditions: {}'.format(name))
            variable_mapping = {
                p.name: a
                for p, a in zip(action.parameters, args)
            }
            instance = action.instantiate(variable_mapping, set(), MockSet(),
                                          type_to_objects,
                                          opt_task.use_min_cost_metric,
                                          function_assignments)
            assert (instance is not None)
            candidates.append(((action, args), instance))
        if not candidates:
            raise RuntimeError(
                'Could not find an applicable action {}'.format(name))
        action_instances.append(candidates)
    action_instances.append([(None, get_goal_instance(opt_task.goal))])

    axioms_from_name = get_derived_predicates(opt_task.axioms)
    negative_from_name = {n.name: n for n in negative}
    opt_task.actions = []
    opt_state = set(opt_task.init)
    real_state = set(real_task.init)
    preimage_plan = []
    function_plan = set()
    for layer in action_instances:
        for pair, instance in layer:
            nonderived_preconditions = [
                l for l in instance.precondition
                if l.predicate not in axioms_from_name
            ]
            #nonderived_preconditions = instance.precondition
            if not conditions_hold(opt_state, nonderived_preconditions):
                continue
            opt_task.init = opt_state
            original_axioms = opt_task.axioms
            axiom_from_action = get_necessary_axioms(instance, original_axioms,
                                                     negative_from_name)
            opt_task.axioms = []
            opt_task.actions = axiom_from_action.keys()
            # TODO: maybe it would just be better to drop the negative throughout this process until this end
            with Verbose(False):
                model = build_model.compute_model(
                    pddl_to_prolog.translate(
                        opt_task))  # Changes based on init
            opt_task.axioms = original_axioms

            opt_facts = instantiate.get_fluent_facts(
                opt_task, model) | (opt_state - real_state)
            mock_fluent = MockSet(lambda item: (
                item.predicate in negative_from_name) or (item in opt_facts))
            instantiated_axioms = instantiate_necessary_axioms(
                model, real_state, mock_fluent, axiom_from_action)
            with Verbose(False):
                helpful_axioms, axiom_init, _ = axiom_rules.handle_axioms(
                    [instance], instantiated_axioms, [])
            axiom_from_atom = get_achieving_axioms(opt_state, helpful_axioms,
                                                   axiom_init,
                                                   negative_from_name)
            axiom_plan = []  # Could always add all conditions
            extract_axioms(axiom_from_atom, instance.precondition, axiom_plan)
            # TODO: test if no derived solution

            # TODO: compute required stream facts in a forward way and allow opt facts that are already known required
            for effects in [instance.add_effects, instance.del_effects]:
                for i, (conditions, effect) in enumerate(effects[::-1]):
                    if any(c.predicate in axioms_from_name
                           for c in conditions):
                        raise NotImplementedError(
                            'Conditional effects cannot currently involve derived predicates'
                        )
                    if conditions_hold(real_state, conditions):
                        # Holds in real state
                        effects[i] = ([], effect)
                    elif not conditions_hold(opt_state, conditions):
                        # Does not hold in optimistic state
                        effects.pop(i)
                    else:
                        # TODO: handle more general case where can choose to achieve particular conditional effects
                        raise NotImplementedError(
                            'Conditional effects cannot currently involve certified predicates'
                        )
            #if any(conditions for conditions, _ in instance.add_effects + instance.del_effects):
            #    raise NotImplementedError('Conditional effects are not currently supported: {}'.format(instance.name))

            # TODO: add axiom init to reset state?
            apply_action(opt_state, instance)
            apply_action(real_state, instance)
            preimage_plan.extend(axiom_plan + [instance])
            if not unit_costs and (pair is not None):
                function_plan.update(
                    extract_function_results(results_from_head, *pair))
            break
        else:
            raise RuntimeError('No action instances are applicable')

    preimage = plan_preimage(preimage_plan, set())
    preimage -= set(real_task.init)
    negative_preimage = set(
        filter(lambda a: a.predicate in negative_from_name, preimage))
    preimage -= negative_preimage
    # visualize_constraints(map(fact_from_fd, preimage))
    # TODO: prune with rules
    # TODO: linearization that takes into account satisfied goals at each level
    # TODO: can optimize for all streams & axioms all at once

    for literal in negative_preimage:
        negative = negative_from_name[literal.predicate]
        instance = negative.get_instance(map(obj_from_pddl, literal.args))
        value = not literal.negated
        if instance.enumerated:
            assert (instance.value == value)
        else:
            function_plan.add(
                PredicateResult(instance, value, opt_index=instance.opt_index))

    node_from_atom = get_achieving_streams(evaluations, stream_results)
    preimage_facts = list(
        map(fact_from_fd, filter(lambda l: not l.negated, preimage)))
    stream_plan = []
    extract_stream_plan(node_from_atom, preimage_facts, stream_plan)
    if not optimize:  # TODO: detect this based on unique or not
        return stream_plan + list(function_plan)

    # TODO: search in space of partially ordered plans
    # TODO: local optimization - remove one and see if feasible

    reschedule_problem = get_problem(evaluations,
                                     And(*preimage_facts),
                                     domain,
                                     unit_costs=True)
    reschedule_task = task_from_domain_problem(domain, reschedule_problem)
    reschedule_task.actions, stream_result_from_name = get_stream_actions(
        stream_results)
    new_plan, _ = solve_from_task(reschedule_task,
                                  planner='max-astar',
                                  debug=False)
    # TODO: investigate admissible heuristics
    if new_plan is None:
        return stream_plan + list(function_plan)

    new_stream_plan = [stream_result_from_name[name] for name, _ in new_plan]
    return new_stream_plan + list(function_plan)
コード例 #8
0
def explore(task):
  prog = pddl_to_prolog.translate(task)
  model = build_model.compute_model(prog)
  return instantiate(task, model)
コード例 #9
0
ファイル: build_model.py プロジェクト: AT-GROUP/AT-PLANNER
  def pop(self):
    result = self.queue[self.queue_pos]
    self.queue_pos += 1
    return result
  def popped_elements(self):
    return queue.queue[:self.queue_pos]

def compute_model(prog):
  rules = convert_rules(prog)
  unifier = Unifier(rules)
  # unifier.dump()
  queue = Queue([fact.atom for fact in prog.facts])
  print "Starting instantiation [%d rules]..." % len(rules)
  while queue:
    next_atom = queue.pop()
    matches = unifier.unify(next_atom)
    for rule, cond_index in matches:
      rule.update_index(next_atom, cond_index)
      rule.fire(next_atom, cond_index, queue.push)
  return queue.queue

if __name__ == "__main__":
  import pddl_to_prolog
  print "Parsing..."
  task = pddl.open()
  print "Writing rules..."
  prog = pddl_to_prolog.translate(task)
  print "Computing model..."
  for atom in compute_model(prog):
    print atom
コード例 #10
0
def explore(task):
    prog = pddl_to_prolog.translate(task)
    model = build_model.compute_model(prog)
    with timers.timing("Completing instantiation"):
        return instantiate(task, model)
コード例 #11
0
def create_partial_grounding_generator(task, action_prioritizer):
    prog = pddl_to_prolog.translate(task)
    model = build_model.partial_grounding_compute_model(
        prog, action_prioritizer=action_prioritizer)
    return incremental_instantiate(task, model)
コード例 #12
0
ファイル: instantiate.py プロジェクト: JackyCSer/MyNDPlanner
def explore(task):
    prog = pddl_to_prolog.translate(task)
    model = build_model.compute_model(prog)
    with timers.timing("Completing instantiation"):
        return instantiate(task, model)
コード例 #13
0
def explore(task):
  prog = pddl_to_prolog.translate(task)
  model = build_model.compute_model(prog)
  return instantiate(task, model)
コード例 #14
0
def _explore(task, add_fluents = set()):
    prog = pddl_to_prolog.translate(task, add_fluents)
    model = build_model.compute_model(prog)
    with timers.timing("Completing instantiation"):
        return instantiate(task, model, add_fluents)
コード例 #15
0
def main():
    timer = timers.Timer()
    with timers.timing("Parsing", True):
        task = pddl_parser.open(
            domain_filename=options.domain, task_filename=options.task)
    print('Processing task', task.task_name)
    with timers.timing("Normalizing task"):
        normalize.normalize(task)

    if options.unit_cost:
        transform_into_unit_cost(task)

    perform_sanity_checks(task)

    if options.build_datalog_model:
        print("Building Datalog model...")
        prog = pddl_to_prolog.translate(task, options.keep_action_predicates, options.add_inequalities)
        prog.rename_free_variables()
        if not options.keep_duplicated_rules:
            prog.remove_duplicated_rules()
        with open(options.datalog_file, 'w') as f:
            #prog.dump(f)
            prog.dump(f)

    with timers.timing("Compiling types into unary predicates"):
        g = compile_types.compile_types(task)

    with timers.timing("Checking static predicates"):
        static_pred = static_predicates.check(task)

    assert isinstance(task.goal, pddl.Conjunction) or \
           isinstance(task.goal, pddl.Atom) or \
           isinstance(task.goal, pddl.NegatedAtom), \
        "Goal is not conjunctive."

    if options.ground_state_representation:
        with timers.timing("Generating complete initial state"):
            reachability.generate_overapproximated_reachable_atoms(task, g)

    get_initial_state_size(static_pred, task)

    if options.verbose_data:
        print("%s %s: initial state size %d : time %s" % (
            os.path.basename(os.path.dirname(options.domain)),
            os.path.basename(options.task), len(task.init), timer))
    test_if_experiment(options.test_experiment)

    # Preprocess a dict of supertypes for every type from the TypeGraph
    types_dict = get_types_dict(g)

    # Sets output file from options
    if os.path.isfile(options.output_file):
        print(
            "WARNING: file %s already exists, it will be overwritten" %
            options.output_file)
    output = open(options.output_file, "w")
    sys.stdout = output

    remove_functions_from_initial_state(task)
    remove_predicates.remove_unused_predicate_symbols(task)

    if is_trivially_unsolvable(task, static_pred):
        output_trivially_unsolvable_task()
        sys.exit(0)

    remove_static_predicates_from_goal(task, static_pred)

    print_names_and_representation(task.domain_name, task.task_name)

    type_index = {}
    print_types(task, type_index)

    predicate_index = {}
    print_predicates(task, predicate_index, type_index)

    object_index = {}
    print_objects(task, object_index, type_index, types_dict)

    atom_index = {}
    print_initial_state(task, atom_index, object_index, predicate_index)

    print_goal(task, atom_index, object_index, predicate_index)

    print_action_schemas(task, object_index, predicate_index, type_index)

    test_if_experiment(options.test_experiment)
    return