コード例 #1
0
    def __init__(self, rt_list_three_values_csv, i_list_csv):

        if rt_list_three_values_csv != 'NA':

            rt_list = map(
                float,
                peaks.rt_three_values_to_full_list_string(
                    rt_list_three_values_csv).split(','))
            i_list = map(float, i_list_csv.split(','))

            # i_list_smoothed = smooth_chromatogram_using_Savitzky_Golay(i_list)

            self.rt_list = rt_list
            self.i_list = i_list
            # self.i_list_smoothed = i_list_smoothed

            max_peaks, __ = peaks.peakdetect(i_list, rt_list, 2.0, 0.3)
            # max_peaks_smoothed, __ = peaks.peakdetect(i_list_smoothed, rt_list, 6.0, 0.3)

            if len(max_peaks) > 0:

                # max_peaks_smoothed = filter_smoothed_peaks_based_on_raw_peaks(max_peaks, max_peaks_smoothed)

                max_peaks_all = filter_peaks_based_on_peak_shape(
                    max_peaks, i_list, rt_list)

                self.peak_apex_rt_list = [rt for (rt, i) in max_peaks_all]
                self.peak_apex_i_list = [i for (rt, i) in max_peaks_all]

            else:
                # if no peak found. Most likely there is no signal. Use looser criteria to detect peaks

                max_peaks, __ = peaks.peakdetect(i_list, rt_list, 1.0, 0.3)
                # max_peaks_smoothed, __ = peaks.peakdetect(i_list_smoothed, rt_list, 1.0, 0.3)

                # max_peaks_smoothed = filter_smoothed_peaks_based_on_raw_peaks(max_peaks, max_peaks_smoothed)

                max_peaks_all = filter_peaks_based_on_peak_shape(
                    max_peaks, i_list, rt_list)

                if len(max_peaks) > 0:
                    self.peak_apex_rt_list = [rt for (rt, i) in max_peaks_all]
                    self.peak_apex_i_list = [i for (rt, i) in max_peaks_all]

                else:
                    # if still no peak found, most likely it is an empty chrom.
                    # use the point in the median value as peak
                    self.peak_apex_rt_list = [np.median(np.array(rt_list))]
                    self.peak_apex_i_list = [np.median(np.array(i_list))]
        else:
            self.rt_list = 'NA'
            self.i_list = 'NA'
            self.peak_apex_rt_list = 'NA'
            self.peak_apex_i_list = 'NA'
コード例 #2
0
    def __init__(self, rt_list_three_values_csv, i_list_csv):

        if rt_list_three_values_csv != 'NA':

            rt_list = map(float, peaks.rt_three_values_to_full_list_string(rt_list_three_values_csv).split(','))
            i_list = map(float, i_list_csv.split(','))

            # i_list_smoothed = smooth_chromatogram_using_Savitzky_Golay(i_list)

            self.rt_list = rt_list
            self.i_list = i_list
            # self.i_list_smoothed = i_list_smoothed

            max_peaks, __ = peaks.peakdetect(i_list, rt_list, 2.0, 0.3)
            # max_peaks_smoothed, __ = peaks.peakdetect(i_list_smoothed, rt_list, 6.0, 0.3)

            if len(max_peaks) > 0:

                # max_peaks_smoothed = filter_smoothed_peaks_based_on_raw_peaks(max_peaks, max_peaks_smoothed)

                max_peaks_all = filter_peaks_based_on_peak_shape(max_peaks, i_list, rt_list)

                self.peak_apex_rt_list = [rt for (rt, i) in max_peaks_all]
                self.peak_apex_i_list = [i for (rt, i) in max_peaks_all]

            else:
                # if no peak found. Most likely there is no signal. Use looser criteria to detect peaks

                max_peaks, __ = peaks.peakdetect(i_list, rt_list, 1.0, 0.3)
                # max_peaks_smoothed, __ = peaks.peakdetect(i_list_smoothed, rt_list, 1.0, 0.3)

                # max_peaks_smoothed = filter_smoothed_peaks_based_on_raw_peaks(max_peaks, max_peaks_smoothed)

                max_peaks_all = filter_peaks_based_on_peak_shape(max_peaks, i_list, rt_list)

                if len(max_peaks) > 0:
                    self.peak_apex_rt_list = [rt for (rt, i) in max_peaks_all]
                    self.peak_apex_i_list = [i for (rt, i) in max_peaks_all]

                else:
                    # if still no peak found, most likely it is an empty chrom.
                    # use the point in the median value as peak
                    self.peak_apex_rt_list = [np.median(np.array(rt_list))]
                    self.peak_apex_i_list = [np.median(np.array(i_list))]
        else:
            self.rt_list = 'NA'
            self.i_list = 'NA'
            self.peak_apex_rt_list = 'NA'
            self.peak_apex_i_list = 'NA'
コード例 #3
0
ファイル: IRsound.py プロジェクト: rforcen/sound-of-matter
def jcamp2wav(fh, wavenme=None, rate=44100, secs=5):
    ' convert a fh to a .dx file to a .wav file'

    def sound_func(amp, hz, t):  # sound generation
        return amp * sin(hz * t)

    def mean(l):
        return sum(l) / len(l)

    dct = jcamp.jcamp_read(fh)

    x, y = dct['x'], dct['y']
    dif = (y.max() - y.min())

    pk = peakdetect(y, x, lookahead=1, delta=dif / 10)

    max_peaks = pk[0]  # [ [x0,y0] , ...., [xn,yn] ]

    waves = [[(_y - y.min()) / dif,
              MusicFreq.freq2octave(_x, 0)]
             for _x, _y in max_peaks]  # amp(0..1), freq oct '0'
    waves.sort(reverse=True)  # get <= 10 most powerful
    waves = waves[:10]
    pi2 = pi * 2  # -> evaluate waves average for each sample
    data = np.asarray([
        mean([sound_func(amp, hz, t) for amp, hz in waves])
        for t in np.arange(0, secs * pi2, pi2 / rate)
    ],
                      dtype=np.float32)

    if wavenme is None or not wavenme:
        wavenme = fh.name.replace('.dx', '.wav')

    wav_write(wavenme, rate, data)
コード例 #4
0
def star_sound(fnme, wavenme=None, rate=44100, secs=5):  # from data[1]
    def sound_func(amp, hz, t):  # sound generation
        return amp * sin(hz * t) * sin(MusicFreq.freq2octave(hz, -7) * t)

    def mean(l):
        return sum(l) / len(l)

    irms, lrms, header, data = read_dat(fnme)

    y = data.T[1]
    x = data.T[0]
    dif = (y.max() - y.min())

    pk = peakdetect(y, x, lookahead=1, delta=dif / 10)
    max_peaks = pk[0]  # [ [x0,y0] , ...., [xn,yn] ]

    waves = [[(_y - y.min()) / dif, MusicFreq.freq2octave(_x, 0)] for _x, _y in max_peaks]  # amp(0..1), freq oct '0'
    waves.sort(reverse=True)  # get <= 10 most powerful
    waves = waves[:10]
    pi2 = pi * 2  # -> evaluate waves average for each sample
    datawav = np.asarray(
        [mean([sound_func(amp, hz, t) for amp, hz in waves]) for t in np.arange(0, secs * pi2, pi2 / rate)],
        dtype=np.float32)

    if wavenme is None or not wavenme:
        wavenme = fnme.replace('.dat', '.wav')

    wav_write(wavenme, rate, datawav)
コード例 #5
0
ファイル: ml_tools.py プロジェクト: fgueniat/pylib
def find_peaks(y_axis, x_axis=None, lookahead=200, delta=0):
    r1, r2 = pks.peakdetect(y_axis, x_axis=None, lookahead=200, delta=0)
    return np.array(r1), np.array(r2)