mu_C3=np.random.uniform(-10, 10), mu_Iphi=np.random.uniform(-10, 10), mu_Ipsi=np.random.uniform(-10, 10), sigma_sq_C0=np.random.uniform(1, 10), sigma_sq_C1=np.random.uniform(1, 10), sigma_sq_I1=np.random.uniform(1, 10), sigma_sq_C2=np.random.uniform(1, 10), sigma_sq_I2=np.random.uniform(1, 10), sigma_sq_C3=np.random.uniform(1, 10), sigma_sq_Iphi=np.random.uniform(1, 10), sigma_sq_Ipsi=np.random.uniform(1, 10), n_0=int(50 * 10**np.random.uniform(0, 2.5)), n_1=int(50 * 10**np.random.uniform(0, 2.5)), n_2=int(50 * 10**np.random.uniform(0, 2.5)), n_3=int(50 * 10**np.random.uniform(0, 2.5)), alpha=0.05, pi_min=0.8)) design4_actual_effect_evaluation = (EDActualEffectEvaluation( design4, n_init_samples=args.num_init_samples, n_bootstrap_mean_samples=args.num_bootstrap_samples)) design4_actual_effect_evaluation.run(verbose=False) design4_actual_effect_evaluations.append(design4_actual_effect_evaluation) save_bootstrap_mean_evaluation_collection( design4_actual_effect_evaluations, in_dir=args.output_dir, expt_design_name="normal_dualcontrol", quantity_name="AE")
mu_I1=np.random.uniform(-10, 10), mu_C2=np.random.uniform(-10, 10), mu_I2=np.random.uniform(-10, 10), mu_C3=np.random.uniform(-10, 10), mu_Iphi=np.random.uniform(-10, 10), mu_Ipsi=np.random.uniform(-10, 10), sigma_sq_C0=np.random.uniform(1, 10), sigma_sq_C1=np.random.uniform(1, 10), sigma_sq_I1=np.random.uniform(1, 10), sigma_sq_C2=np.random.uniform(1, 10), sigma_sq_I2=np.random.uniform(1, 10), sigma_sq_C3=np.random.uniform(1, 10), sigma_sq_Iphi=np.random.uniform(1, 10), sigma_sq_Ipsi=np.random.uniform(1, 10), n_0=int(50 * 10**np.random.uniform(0, 2.5)), n_1=int(50 * 10**np.random.uniform(0, 2.5)), n_2=int(50 * 10**np.random.uniform(0, 2.5)), n_3=int(50 * 10**np.random.uniform(0, 2.5)), alpha=0.05, pi_min=0.8 ) ) design2_actual_effect_evaluation = ( EDActualEffectEvaluation(design2, n_init_samples=args.num_init_samples, n_bootstrap_mean_samples=args.num_bootstrap_samples)) design2_actual_effect_evaluation.run(verbose=False) design2_actual_effect_evaluations.append(design2_actual_effect_evaluation) save_bootstrap_mean_evaluation_collection( design2_actual_effect_evaluations, in_dir=args.output_dir, expt_design_name="normal_allsample", quantity_name="AE")
mu_I2=np.random.uniform(-10, 10), mu_C3=np.random.uniform(-10, 10), mu_Iphi=np.random.uniform(-10, 10), mu_Ipsi=np.random.uniform(-10, 10), sigma_sq_C0=np.random.uniform(1, 10), sigma_sq_C1=np.random.uniform(1, 10), sigma_sq_I1=np.random.uniform(1, 10), sigma_sq_C2=np.random.uniform(1, 10), sigma_sq_I2=np.random.uniform(1, 10), sigma_sq_C3=np.random.uniform(1, 10), sigma_sq_Iphi=np.random.uniform(1, 10), sigma_sq_Ipsi=np.random.uniform(1, 10), n_0=int(50 * 10**np.random.uniform(0, 2.5)), n_1=int(50 * 10**np.random.uniform(0, 2.5)), n_2=int(50 * 10**np.random.uniform(0, 2.5)), n_3=int(50 * 10**np.random.uniform(0, 2.5)), alpha=0.05, pi_min=0.8)) design2_mde_size_evaluation = (EDMDESizeEvaluation( design2, n_init_samples=args.num_init_samples, n_bootstrap_mean_samples=args.num_bootstrap_samples)) design2_mde_size_evaluation.run(verbose=True) design2_mde_size_evaluations.append(design2_mde_size_evaluation) save_bootstrap_mean_evaluation_collection(design2_mde_size_evaluations, in_dir=args.output_dir, expt_design_name="normal_allsample", quantity_name="MDES")
mu_C3=np.random.uniform(-10, 10), mu_Iphi=np.random.uniform(-10, 10), mu_Ipsi=np.random.uniform(-10, 10), sigma_sq_C0=np.random.uniform(1, 10), sigma_sq_C1=np.random.uniform(1, 10), sigma_sq_I1=np.random.uniform(1, 10), sigma_sq_C2=np.random.uniform(1, 10), sigma_sq_I2=np.random.uniform(1, 10), sigma_sq_C3=np.random.uniform(1, 10), sigma_sq_Iphi=np.random.uniform(1, 10), sigma_sq_Ipsi=np.random.uniform(1, 10), n_0=int(50 * 10**np.random.uniform(0, 2.5)), n_1=int(50 * 10**np.random.uniform(0, 2.5)), n_2=int(50 * 10**np.random.uniform(0, 2.5)), n_3=int(50 * 10**np.random.uniform(0, 2.5)), alpha=0.05, pi_min=0.8)) design1_mde_size_evaluation = (EDMDESizeEvaluation( design1, n_init_samples=args.num_init_samples, n_bootstrap_mean_samples=args.num_bootstrap_samples)) design1_mde_size_evaluation.run(verbose=True) design1_mde_size_evaluations.append(design1_mde_size_evaluation) save_bootstrap_mean_evaluation_collection( design1_mde_size_evaluations, in_dir=args.output_dir, expt_design_name="normal_intersectiononly", quantity_name="MDES")
mu_C3=np.random.uniform(-10, 10), mu_Iphi=np.random.uniform(-10, 10), mu_Ipsi=np.random.uniform(-10, 10), sigma_sq_C0=np.random.uniform(1, 10), sigma_sq_C1=np.random.uniform(1, 10), sigma_sq_I1=np.random.uniform(1, 10), sigma_sq_C2=np.random.uniform(1, 10), sigma_sq_I2=np.random.uniform(1, 10), sigma_sq_C3=np.random.uniform(1, 10), sigma_sq_Iphi=np.random.uniform(1, 10), sigma_sq_Ipsi=np.random.uniform(1, 10), n_0=int(50 * 10**np.random.uniform(0, 2.5)), n_1=int(50 * 10**np.random.uniform(0, 2.5)), n_2=int(50 * 10**np.random.uniform(0, 2.5)), n_3=int(50 * 10**np.random.uniform(0, 2.5)), alpha=0.05, pi_min=0.8)) design1_actual_effect_evaluation = (EDActualEffectEvaluation( design1, n_init_samples=args.num_init_samples, n_bootstrap_mean_samples=args.num_bootstrap_samples)) design1_actual_effect_evaluation.run(verbose=False) design1_actual_effect_evaluations.append(design1_actual_effect_evaluation) save_bootstrap_mean_evaluation_collection( design1_actual_effect_evaluations, in_dir=args.output_dir, expt_design_name="normal_intersectiononly", quantity_name="AE")
mu_C3=np.random.uniform(-10, 10), mu_Iphi=np.random.uniform(-10, 10), mu_Ipsi=np.random.uniform(-10, 10), sigma_sq_C0=np.random.uniform(1, 10), sigma_sq_C1=np.random.uniform(1, 10), sigma_sq_I1=np.random.uniform(1, 10), sigma_sq_C2=np.random.uniform(1, 10), sigma_sq_I2=np.random.uniform(1, 10), sigma_sq_C3=np.random.uniform(1, 10), sigma_sq_Iphi=np.random.uniform(1, 10), sigma_sq_Ipsi=np.random.uniform(1, 10), n_0=int(50 * 10**np.random.uniform(0, 2.5)), n_1=int(50 * 10**np.random.uniform(0, 2.5)), n_2=int(50 * 10**np.random.uniform(0, 2.5)), n_3=int(50 * 10**np.random.uniform(0, 2.5)), alpha=0.05, pi_min=0.8)) design4_mde_size_evaluation = (EDMDESizeEvaluation( design4, n_init_samples=args.num_init_samples, n_bootstrap_mean_samples=args.num_bootstrap_samples)) design4_mde_size_evaluation.run(verbose=True) design4_mde_size_evaluations.append(design4_mde_size_evaluation) save_bootstrap_mean_evaluation_collection( design4_mde_size_evaluations, in_dir=args.output_dir, expt_design_name="normal_dualcontrol", quantity_name="MDES")