コード例 #1
0
 def test_should_include_columns_also_for_empty_dataframe(self):
     df = pd.DataFrame({
         'group': [],
         'value': []
     })
     result_df = groupby_agg_droplevel(df, ['group'], {
         'value': {
             'sum': sum,
             'count': pd.np.size
         }
     })
     assert set(result_df.columns) == {'group', 'sum', 'count'}
     assert len(result_df) == 0
コード例 #2
0
 def test_should_apply_simple_aggregation_with_function(self):
     df = pd.DataFrame({
         'g': ['g1', 'g1', 'g2'],
         'v': [1, 2, 3]
     })
     result_df = groupby_agg_droplevel(df, ['g'], {
         'v': sum
     })
     assert list(result_df.columns) == ['g', 'v']
     assert list(result_df.values.tolist()) == [
         ['g1', 3],
         ['g2', 3]
     ]
コード例 #3
0
 def test_should_apply_nested_aggregation_with_functions(self):
     df = pd.DataFrame({
         'group': ['g1', 'g1', 'g2'],
         'value': [1, 2, 3]
     })
     result_df = groupby_agg_droplevel(df, ['group'], {
         'value': {
             'sum': sum,
             'count': pd.np.size
         }
     })
     assert set(result_df.columns) == {'group', 'sum', 'count'}
     # ensure the order of the columns is as expected
     result_df = result_df[['group', 'sum', 'count']]
     assert result_df.values.tolist() == [
         ['g1', 3, 2],
         ['g2', 3, 1]
     ]