コード例 #1
0
ファイル: test_takestep.py プロジェクト: yangxi1209/pele
 def test1(self):
     system = LJCluster(6)
     ss0 = 1.
     displace = RandomDisplacement(stepsize=ss0)
     ts = AdaptiveStepsize(displace, interval=10)
     bh = system.get_basinhopping(takestep=ts)
     bh.run(9)
     self.assertAlmostEqual(displace.stepsize, ss0, 10)
     bh.run(2)
     self.assertNotAlmostEqual(displace.stepsize, ss0, 1)
コード例 #2
0
def initialize_system():

    system = LJCluster(natoms)
    x0 = np.random.random(natoms * 3)  #.reshape(natoms,3)
    db = system.create_database()
    step = RandomDisplacement(stepsize=1.0)
    bh = system.get_basinhopping(database=db,
                                 takestep=step,
                                 coords=x0,
                                 temperature=10.0)

    return system, db, bh
コード例 #3
0
ファイル: soft_sphere_bulk.py プロジェクト: spraharsh/pele
 def get_takestep(self, **kwargs):
     """return the takestep object for use in basinhopping, etc.
     """
     d = dict(self.params.takestep)
     d.update(kwargs)
     kwargs = d
     try:
         stepsize = kwargs.pop("stepsize")
     except KeyError:
         stepsize = 0.6
     takeStep = RandomDisplacement(stepsize=stepsize)
     return takeStep
コード例 #4
0
def build_lj_nested_sampling(system, db):
    from pele.takestep import RandomDisplacement
    nreplicas = 20
    mciter = 10000
    nminima = 10000
    minima = db.minima()
    if len(minima) > nminima:
        minima = minima[:nminima]
    takestep = RandomDisplacement(stepsize=0.5)
    accept_tests = system.get_config_tests()
    ns = NestedSamplingBS(system,
                          nreplicas,
                          takestep,
                          minima,
                          mciter=mciter,
                          accept_tests=accept_tests)
    return ns
コード例 #5
0
ファイル: basesystem.py プロジェクト: spraharsh/pele
 def get_takestep(self, **kwargs):
     """return the takestep object for use in basinhopping, etc.
     
     Notes
     -----
     default is random displacement with adaptive step size and
     adaptive temperature
     
     See Also
     --------
     pele.takestep
     """
     kwargs = dict_copy_update(self.params["takestep"], kwargs)
     try:
         stepsize = kwargs.pop("stepsize")
     except KeyError:
         stepsize = 0.6
     takeStep = RandomDisplacement(stepsize=stepsize)
     tsAdaptive = AdaptiveStepsizeTemperature(takeStep, **kwargs)
     return tsAdaptive
コード例 #6
0
def bh_no_system_class():
    import numpy as np
    from pele.potentials import LJ
    natoms = 17
    potential = LJ()
    x0 = np.random.uniform(-1, 1, 3*natoms)
    
    from pele.takestep import RandomDisplacement, AdaptiveStepsizeTemperature
    displace = RandomDisplacement()
    adaptive_displacement = AdaptiveStepsizeTemperature(displace)
    
    from pele.storage import Database
    database = Database("lj17.sqlite")
    
    from pele.basinhopping import BasinHopping
    bh = BasinHopping(x0, potential, adaptive_displacement, storage=database.minimum_adder)
    bh.run(10)
    
    for m in database.minima():
        print m.energy
コード例 #7
0
ファイル: xy_model_system.py プロジェクト: yangxi1209/pele
 def get_takestep(self, **kwargs):
     """return the takestep object for use in basinhopping, etc.
     
     default is random displacement with adaptive step size 
     adaptive temperature
     
     See Also
     --------
     pele.takestep
     """
     if self.phi_disorder > 0.01:
         return super(XYModlelSystem, self).get_takestep(**kwargs)
     # if no disorder, turn off adaptive step and temperature.
     from pele.takestep import RandomDisplacement
     kwargs = dict(self.params["takestep"].items() + kwargs.items())
     try:
         stepsize = kwargs.pop("stepsize")
     except KeyError:
         stepsize = 2. * np.pi
     takeStep = RandomDisplacement(stepsize=stepsize)
     return takeStep
コード例 #8
0
def run_basinhopping(ts, system, db, x):

    if x == None: x = 0.1 * np.random.random() + 0.003

    E0 = -44.5
    step = RandomDisplacement(stepsize=x)
    bh = system.get_basinhopping(database=db,
                                 takestep=step,
                                 coords=x0,
                                 temperature=1.0)
    t = time.time()
    while True:
        bh.run(1)
        eps = np.abs(bh.trial_energy / E0 - 1.)
        print "\n\n", bh.trial_energy, bh.takeStep.stepsize, "\n\n"
        if eps < 0.02:
            print "Finished\n\n", bh.trial_energy, bh.takeStep.stepsize
            print bh.trial_energy
            break

    dt = time.time() - t
    #ts.points = (ssize,dt)
    ts.points = np.concatenate((ts.points, [[x, dt]]))
コード例 #9
0
ファイル: amberSystem.py プロジェクト: yangxi1209/pele
    def test_BH(self, db, nsteps):

        self.potential = self.get_potential()

        from pele.takestep import RandomDisplacement, AdaptiveStepsizeTemperature

        takeStepRnd = RandomDisplacement(stepsize=2)
        tsAdaptive = AdaptiveStepsizeTemperature(takeStepRnd,
                                                 interval=10,
                                                 verbose=True)

        self.params.basinhopping["temperature"] = 10.0

        # todo - how do you save N lowest?

        bh = self.get_basinhopping(database=db, takestep=takeStepRnd)
        bh = self.get_basinhopping(database=db, takestep=tsAdaptive)

        print 'Running BH .. '
        bh.run(nsteps)

        print "Number of minima found = ", len(db.minima())
        min0 = db.minima()[0]
        print "lowest minimum found has energy = ", min0.energy
コード例 #10
0
import numpy as np
from src.runmc import mc_cython

from lj_run import LJClusterNew, MonteCarloCompiled
from nested_sampling import MonteCarloChain
from pele.takestep import RandomDisplacement
from pele.utils.xyz import write_xyz

system = LJClusterNew(31)

x = system.get_random_configuration()

with open("test.xyz", "w") as fout:
    write_xyz(fout, x)

mciter = 100000
stepsize = .01
Emax = 1e20
radius = 2.5

mcc = MonteCarloCompiled(system, radius)
mcc(x.copy(), mciter, stepsize, Emax)
print mcc.naccept, mcc.nsteps, mcc.energy

takestep = RandomDisplacement(stepsize=stepsize)
mc = MonteCarloChain(system.get_potential(), x.copy(), takestep, Emax,
                     system.get_config_tests())
for i in xrange(mciter):
    mc.step()
print mc.naccept, mc.nsteps, mc.energy
コード例 #11
0
ファイル: 6_reseeding.py プロジェクト: yangxi1209/pele
    def __init__(self, pot, T=10., nsteps=100, stepsize=0.1):
        self.potential = pot
        self.T = T
        self.nsteps = nsteps

        self.mcstep = RandomDisplacement(stepsize=stepsize)
コード例 #12
0
"""
Example 4: modify the parameters of the adaptive stepsize
note that the system class uses adaptive stepsize by default, 
so the previous examples also use adaptive stepsize
"""
from __future__ import print_function
from pele.systems import LJCluster
from pele.takestep import RandomDisplacement, AdaptiveStepsizeTemperature

natoms = 12
niter = 100
system = LJCluster(natoms)

db = system.create_database()

# create takestep routine manually
step = RandomDisplacement(stepsize=0.3)
# wrap it in the class which will adaptively improve the stepsize
wrapped_step = AdaptiveStepsizeTemperature(step, interval=30)

bh = system.get_basinhopping(database=db, takestep=wrapped_step)
bh.run(niter)
print("the lowest energy found after", niter, " basinhopping steps is", db.minima()[0].energy)
print("")
コード例 #13
0
def run_nested_sampling_lj(system,
                           nreplicas=300,
                           mciter=1000,
                           target_ratio=0.7,
                           label="test",
                           minima=None,
                           use_compiled=True,
                           nproc=1,
                           triv_paral=True,
                           minprob=1,
                           maxiter=1e100,
                           **kwargs):
    takestep = RandomDisplacement(stepsize=0.07)
    accept_tests = system.get_config_tests()

    if type(system) is LJClusterNew:
        if use_compiled:
            mc_runner = MonteCarloCompiled(system.radius)

#       import pickle
#       with open("testpickle", "w") as pout:
#           pickle.dump(mc_runner, pout)
        else:
            mc_runner = MonteCarloChain(system.get_potential(),
                                        takestep,
                                        accept_tests=accept_tests)
        print "using the compiled MC = ", use_compiled
    elif type(system) is HarParticle:
        mc_runner = HarRunner(system)
        print "using HarRunner"
    elif type(system) is IsingSystem:
        mc_runner = IsingRunnerC(system)
        print "using IsingRunner"
    else:
        raise TypeError('system type is not known')

    print "using", nproc, "processors"

    if minima is not None:
        assert (len(minima) > 0)
        print "using", len(minima), "minima"
        ns = NestedSamplingBS(system,
                              nreplicas,
                              mc_runner,
                              minima,
                              mciter=mciter,
                              target_ratio=target_ratio,
                              stepsize=0.07,
                              nproc=nproc,
                              triv_paral=triv_paral,
                              minprob=minprob,
                              **kwargs)
    else:
        ns = NestedSampling(system,
                            nreplicas,
                            mc_runner,
                            mciter=mciter,
                            target_ratio=target_ratio,
                            stepsize=0.07,
                            nproc=nproc,
                            triv_paral=triv_paral,
                            **kwargs)
    etol = 0.01

    ns = run_nested_sampling(ns, label, etol, maxiter=maxiter)
    return ns
コード例 #14
0
def runptmc(nsteps_tot=100000):
    natoms = 31
    nreplicas = 4
    Tmin = 0.2
    Tmax = 0.4

    nsteps_equil = 10000
    nsteps_tot = 100000
    histiprint = nsteps_tot / 10
    exchange_frq = 100 * nreplicas

    coords = np.random.random(3 * natoms)
    #quench the coords so we start from a reasonable location
    mypot = lj.LJ()
    ret = quench(coords, mypot)
    coords = ret.coords

    Tlist = getTemps(Tmin, Tmax, nreplicas)
    replicas = []
    ostreams = []
    histograms = []
    takesteplist = []
    radius = 2.5
    # create all the replicas which will be passed to PTMC
    for i in range(nreplicas):
        T = Tlist[i]
        potential = lj.LJ()

        takestep = RandomDisplacement(stepsize=0.01)
        adaptive = AdaptiveStepsize(takestep, last_step=nsteps_equil)
        takesteplist.append(adaptive)

        file = "mcout." + str(i + 1)
        ostream = open(file, "w")

        hist = EnergyHistogram(-134., 10., 1000)
        histograms.append(hist)
        event_after_step = [hist]

        radiustest = SphericalContainer(radius)
        accept_tests = [radiustest]

        mc = MonteCarlo(coords, potential, takeStep=takestep, temperature=T, \
                        outstream=ostream, event_after_step = event_after_step, \
                        confCheck = accept_tests)
        mc.histogram = hist  #for convienence
        mc.printfrq = 1
        replicas.append(mc)

    #is it possible to pickle a mc object?
    #cp = copy.deepcopy(replicas[0])
    #import pickle
    #with open("mc.pickle", "w") as fout:
    #pickle.dump(takesteplist[0], fout)

    #attach an event to print xyz coords
    from pele.printing.print_atoms_xyz import PrintEvent
    printxyzlist = []
    for n, rep in enumerate(replicas):
        outf = "dumpstruct.%d.xyz" % (n + 1)
        printxyz = PrintEvent(outf, frq=500)
        printxyzlist.append(printxyz)
        rep.addEventAfterStep(printxyz)

    #attach an event to print histograms
    for n, rep in enumerate(replicas):
        outf = "hist.%d" % (n + 1)
        histprint = PrintHistogram(outf, rep.histogram, histiprint)
        rep.addEventAfterStep(histprint)

    ptmc = PTMC(replicas)
    ptmc.use_independent_exchange = True
    ptmc.exchange_frq = exchange_frq
    ptmc.run(nsteps_tot)

    #do production run
    #fix the step sizes
    #for takestep in takesteplist:
    #    takestep.useFixedStep()
    #ptmc.run(30000)

    if False:  #this doesn't work
        print "final energies"
        for rep in ptmc.replicas:
            print rep.temperature, rep.markovE
        for rep in ptmc.replicas_par:
            print rep.mcsys.markovE
        for k in range(nreplicas):
            e, T = ptmc.getRepEnergyT(k)
            print T, e

    if False:  #this doesn't work
        print "histograms"
        for i, hist in enumerate(histograms):
            fname = "hist." + str(i)
            print fname
            with open(fname, "w") as fout:
                for (e, visits) in hist:
                    fout.write("%g %d\n" % (e, visits))

    ptmc.end()  #close the open threads
コード例 #15
0
 def get_takestep(self, **kwargs):
     """return the takestep object for use in basinhopping, etc."""
     return RandomDisplacement(stepsize=self.scale)