コード例 #1
0
ファイル: _test_orthogopt.py プロジェクト: borislavujo/pele
 def test_o(self):
     """test orthogopt"""
     from pele.transition_states import zeroEV_cluster
     natoms = 13
     vec = np.random.uniform(-1,1,natoms*3)
     vec /= np.linalg.norm(vec)
     coords = np.random.uniform(-1,1,natoms*3)
     
     #orthogonalize vec
     vec = orthogopt(vec, coords)
     
     zeroev = zeroEV_cluster(coords)
     for u in zeroev:
         #print np.dot(u, vec)
         self.assertAlmostEqual(0., np.dot(u, vec), 5)
コード例 #2
0
    def test_o(self):
        # test orthogopt
        from pele.transition_states import zeroEV_cluster

        natoms = 13
        vec = np.random.uniform(-1, 1, natoms * 3)
        vec /= np.linalg.norm(vec)
        coords = np.random.uniform(-1, 1, natoms * 3)

        # orthogonalize vec
        vec = orthogopt(vec, coords)

        zeroev = zeroEV_cluster(coords)
        for u in zeroev:
            # print np.dot(u, vec)
            self.assertAlmostEqual(0., np.dot(u, vec), 5)
コード例 #3
0
ファイル: cholesky.py プロジェクト: Mahdisadjadi/pele
natoms = 1000
system = LJCluster(natoms)
#system.params.structural_quench_params.debug = True
#system.params.structural_quench_params.iprint = 100
db = system.create_database()
bh = system.get_basinhopping(db)
bh.run(1)

m = db.minima()[0]
coords = m.coords

potential = system.get_potential()
energy, gradient, hessian = potential.getEnergyGradientHessian(coords)

dummy_vec = ts.gramm_schmidt(ts.zeroEV_cluster(coords))

shifted_hess = hessian.copy()

for i in range(6):
    shifted_hess += np.outer(dummy_vec[i], dummy_vec[i])

shifted_eval, shifted_evec = get_sorted_eig(shifted_hess)

print "First log sum: ", np.sum(np.log(shifted_eval[6:]))

sparse_hess = scipy.sparse.csc_matrix(shifted_hess)
factor = cholmod.cholesky(sparse_hess)

diagonal = np.diagonal(factor.L().todense())
コード例 #4
0
ファイル: cholesky.py プロジェクト: spraharsh/pele
natoms = 1000
system = LJCluster(natoms)
#system.params.structural_quench_params.debug = True
#system.params.structural_quench_params.iprint = 100
db = system.create_database()
bh = system.get_basinhopping(db)
bh.run(1)

m = db.minima()[0]
coords = m.coords

potential = system.get_potential()
energy, gradient, hessian = potential.getEnergyGradientHessian(coords)

dummy_vec = ts.gramm_schmidt(ts.zeroEV_cluster(coords))

shifted_hess = hessian.copy()

for i in range(6):
    shifted_hess += np.outer(dummy_vec[i], dummy_vec[i])

shifted_eval, shifted_evec = get_sorted_eig(shifted_hess)

print("First log sum: ", np.sum(np.log(shifted_eval[6:])))

sparse_hess = scipy.sparse.csc_matrix(shifted_hess)
factor = cholmod.cholesky(sparse_hess)

diagonal = np.diagonal(factor.L().todense())