batch_size=mpii.get_length(VALID_MODE), shuffle=False) logger.debug('Pre-loading MPII validation data...') [x_val], [p_val, afmat_val, head_val] = mpii_val[0] """Define a loader for PennAction test samples. """ penn_te = BatchLoader(penn_seq, ['frame'], ['pennaction'], TEST_MODE, batch_size=1, shuffle=False) """Evaluate on 2D action recognition (PennAction).""" s = eval_singleclip_generator(models[1], penn_te, logdir=logdir) logger.debug('Best score on PennAction (single-clip): ') logger.debug(str(s)) s = eval_multiclip_dataset(models[1], penn_seq, subsampling=pennaction_dataconf.fixed_subsampling, logdir=logdir) logger.debug('Best score on PennAction (multi-clip): ') logger.debug(str(s)) # MPII EVALUATION pose_pred = np.zeros_like(p_val) mode = VALID_MODE """Evaluate on 2D pose estimation (MPII).""" s, y_pred = eval_singleperson_pckh(models[0], x_val, p_val[:, :, 0:2], afmat_val, head_val) logger.debug('Best score on MPII: ') logger.debug(str(s)) pose_pred = get_pred_data(mpii, pose_pred=pose_pred, pred=y_pred, mode=mode)
num_joints, num_blocks, pose_dim=2, pose_net_version='v1', full_trainable=False) """Load pre-trained model.""" weights_path = get_file(weights_file, TF_WEIGHTS_PATH, md5_hash=md5_hash, cache_subdir='models') model.load_weights(weights_path) """Load PennAction dataset.""" penn_seq = PennAction('datasets/PennAction', pennaction_dataconf, poselayout=pa16j2d, topology='sequences', use_gt_bbox=use_bbox, clip_size=num_frames) penn_te = BatchLoader(penn_seq, ['frame'], ['pennaction'], TEST_MODE, batch_size=1, shuffle=False) printcn(OKGREEN, 'Evaluation on PennAction multi-clip using predicted bboxes') eval_multiclip_dataset( model, penn_seq, bboxes_file='datasets/PennAction/penn_pred_bboxes_16f.json', logdir=logdir)
num_actions, input_shape, num_frames, num_joints, num_blocks, pose_dim=2, pose_net_version='v1', full_trainable=False) """Load pre-trained model.""" weights_path = get_file(weights_file, TF_WEIGHTS_PATH, md5_hash=md5_hash, cache_subdir='models') model.load_weights(weights_path) """Load PennAction dataset.""" penn_seq = PennAction('E:\Bachelorarbeit-SS20\datasets\PennAction', pennaction_dataconf, poselayout=pa16j2d, topology='sequences', use_gt_bbox=use_bbox, clip_size=num_frames, pred_bboxes_file='penn_pred_bboxes_16f.json') penn_te = BatchLoader(penn_seq, ['frame'], ['pennaction'], TEST_MODE, batch_size=1, shuffle=False) printcn(OKGREEN, 'Evaluation on PennAction multi-clip using predicted bboxes') eval_multiclip_dataset(model, penn_seq, subsampling=2, logdir=logdir)