コード例 #1
0
    def to_torch(self, dtype=None):
        """Apply the Torch interface to the internal quantum tape.

        Args:
            dtype (tf.dtype): The dtype that the Torch QNode should
                output. If not provided, the default is ``torch.float64``.

        Raises:
            qml.QuantumFunctionError: if PyTorch >= 1.3 is not installed
        """
        # pylint: disable=import-outside-toplevel
        try:
            import torch
            from pennylane.beta.interfaces.torch import TorchInterface

            self.interface = "torch"

            if not isinstance(self.dtype, torch.dtype):
                self.dtype = None

            self.dtype = dtype or self.dtype or TorchInterface.dtype

            if self.dtype is np.complex128:
                self.dtype = torch.complex128

            if self.qtape is not None:
                TorchInterface.apply(self.qtape, dtype=self.dtype)

        except ImportError:
            raise qml.QuantumFunctionError(
                "PyTorch not found. Please install the latest "
                "version of PyTorch to enable the 'torch' interface.")
コード例 #2
0
    def test_complex_min_version(self, monkeypatch):
        """Test if an error is raised when a version of torch before 1.6.0 is used as the dtype
        in the apply() method"""

        with monkeypatch.context() as m:
            m.setattr(qml.beta.interfaces.torch, "COMPLEX_SUPPORT", False)
            with pytest.raises(qml.QuantumFunctionError,
                               match="Version 1.6.0 or above of PyTorch"):
                TorchInterface.apply(QuantumTape(), dtype=torch.complex128)
コード例 #3
0
    def test_repeated_interface_construction(self):
        """Test that the interface is correctly applied multiple times"""
        with TorchInterface.apply(QuantumTape()) as tape:
            qml.RX(0.5, wires=0)
            expval(qml.PauliX(0))

        assert tape.interface == "torch"
        assert isinstance(tape, TorchInterface)
        assert tape.__bare__ == QuantumTape

        TorchInterface.apply(tape, dtype=torch.float32)
        assert tape.interface == "torch"
        assert isinstance(tape, TorchInterface)
        assert tape.__bare__ == QuantumTape
        assert tape.dtype is torch.float32
コード例 #4
0
    def test_ragged_differentiation(self, tol):
        """Tests correct output shape and evaluation for a tape
        with prob and expval outputs"""
        dev = qml.device("default.qubit", wires=2)
        x_val = 0.543
        y_val = -0.654
        x = torch.tensor(x_val, requires_grad=True)
        y = torch.tensor(y_val, requires_grad=True)

        with TorchInterface.apply(QuantumTape()) as tape:
            qml.RX(x, wires=[0])
            qml.RY(y, wires=[1])
            qml.CNOT(wires=[0, 1])
            expval(qml.PauliZ(0))
            probs(wires=[1])

        res = tape.execute(dev)

        expected = np.array([
            np.cos(x_val),
            (1 + np.cos(x_val) * np.cos(y_val)) / 2,
            (1 - np.cos(x_val) * np.cos(y_val)) / 2,
        ])
        assert np.allclose(res.detach().numpy(), expected, atol=tol, rtol=0)

        loss = torch.sum(res)
        loss.backward()
        expected = np.array([
            -np.sin(x_val) + -np.sin(x_val) * np.cos(y_val) / 2 +
            np.cos(y_val) * np.sin(x_val) / 2,
            -np.cos(x_val) * np.sin(y_val) / 2 +
            np.cos(x_val) * np.sin(y_val) / 2,
        ])
        assert np.allclose(x.grad, expected[0], atol=tol, rtol=0)
        assert np.allclose(y.grad, expected[1], atol=tol, rtol=0)
コード例 #5
0
    def test_classical_processing(self, tol):
        """Test classical processing within the quantum tape"""
        p_val = [0.1, 0.2]
        params = torch.tensor(p_val, requires_grad=True)

        dev = qml.device("default.qubit", wires=1)

        with TorchInterface.apply(QuantumTape()) as tape:
            qml.RY(params[0] * params[1], wires=0)
            qml.RZ(0.2, wires=0)
            qml.RX(params[1] + params[1]**2 + torch.sin(params[0]), wires=0)
            expval(qml.PauliZ(0))

        assert tape.trainable_params == {0, 2}

        tape_params = [i.detach().numpy() for i in tape.get_parameters()]
        assert np.allclose(
            tape_params,
            [p_val[0] * p_val[1], p_val[1] + p_val[1]**2 + np.sin(p_val[0])],
            atol=tol,
            rtol=0,
        )

        res = tape.execute(dev)
        res.backward()

        assert isinstance(params.grad, torch.Tensor)
        assert params.shape == (2, )
コード例 #6
0
    def test_jacobian_dtype(self, tol):
        """Test calculating the jacobian with a different datatype"""
        a_val = 0.1
        b_val = 0.2

        a = torch.tensor(a_val, requires_grad=True, dtype=torch.float32)
        b = torch.tensor(b_val, requires_grad=True, dtype=torch.float32)

        dev = qml.device("default.qubit", wires=2)

        with TorchInterface.apply(QuantumTape(), dtype=torch.float32) as tape:
            qml.RY(a, wires=0)
            qml.RX(b, wires=1)
            qml.CNOT(wires=[0, 1])
            expval(qml.PauliZ(0))
            expval(qml.PauliY(1))

        assert tape.trainable_params == {0, 1}
        res = tape.execute(dev)

        assert isinstance(res, torch.Tensor)
        assert res.shape == (2, )
        assert res.dtype is torch.float32

        loss = torch.sum(res)
        loss.backward()
        assert a.grad.dtype is torch.float32
        assert b.grad.dtype is torch.float32
コード例 #7
0
    def test_interface_construction(self):
        """Test that the interface is correctly applied"""
        with TorchInterface.apply(QuantumTape()) as tape:
            qml.RX(0.5, wires=0)
            expval(qml.PauliX(0))

        assert tape.interface == "torch"
        assert isinstance(tape, TorchInterface)
        assert tape.__bare__ == QuantumTape
コード例 #8
0
    def test_sampling(self):
        """Test sampling works as expected"""
        dev = qml.device("default.qubit", wires=2, shots=10)

        with TorchInterface.apply(QuantumTape()) as tape:
            qml.Hadamard(wires=[0])
            qml.CNOT(wires=[0, 1])
            sample(qml.PauliZ(0))
            sample(qml.PauliX(1))

        res = tape.execute(dev)

        assert res.shape == (2, 10)
        assert isinstance(res, torch.Tensor)
コード例 #9
0
    def test_execution(self):
        """Test execution"""
        a = torch.tensor(0.1, requires_grad=True)
        dev = qml.device("default.qubit", wires=1)

        with TorchInterface.apply(QuantumTape()) as tape:
            qml.RY(a, wires=0)
            qml.RX(torch.tensor(0.2), wires=0)
            expval(qml.PauliZ(0))

        assert tape.trainable_params == {0}
        res = tape.execute(dev)

        assert isinstance(res, torch.Tensor)
        assert res.shape == (1, )
コード例 #10
0
    def test_get_parameters(self):
        """Test that the get parameters function correctly sets and returns the
        trainable parameters"""
        a = torch.tensor(0.1, requires_grad=True)
        b = torch.tensor(0.2)
        c = torch.tensor(0.3, requires_grad=True)
        d = 0.4

        with TorchInterface.apply(QuantumTape()) as tape:
            qml.Rot(a, b, c, wires=0)
            qml.RX(d, wires=1)
            qml.CNOT(wires=[0, 1])
            expval(qml.PauliX(0))

        assert tape.trainable_params == {0, 2}
        assert np.all(tape.get_parameters() == [a, c])
コード例 #11
0
    def test_jacobian_options(self, mocker, tol):
        """Test setting jacobian options"""
        spy = mocker.spy(QuantumTape, "numeric_pd")

        a = torch.tensor([0.1, 0.2], requires_grad=True)

        dev = qml.device("default.qubit", wires=1)

        with TorchInterface.apply(QuantumTape()) as tape:
            qml.RY(a[0], wires=0)
            qml.RX(a[1], wires=0)
            expval(qml.PauliZ(0))

        tape.jacobian_options = {"h": 1e-8, "order": 2}
        res = tape.execute(dev)
        res.backward()

        for args in spy.call_args_list:
            assert args[1]["order"] == 2
            assert args[1]["h"] == 1e-8
コード例 #12
0
    def test_jacobian(self, mocker, tol):
        """Test jacobian calculation"""
        spy = mocker.spy(QuantumTape, "jacobian")

        a_val = 0.1
        b_val = 0.2

        a = torch.tensor(a_val, requires_grad=True)
        b = torch.tensor(b_val, requires_grad=True)

        dev = qml.device("default.qubit", wires=2)

        with TorchInterface.apply(QuantumTape()) as tape:
            qml.RZ(torch.tensor(0.543), wires=0)
            qml.RY(a, wires=0)
            qml.RX(b, wires=1)
            qml.CNOT(wires=[0, 1])
            expval(qml.PauliZ(0))
            expval(qml.PauliY(1))

        assert tape.trainable_params == {1, 2}
        res = tape.execute(dev)

        assert isinstance(res, torch.Tensor)
        assert res.shape == (2, )

        expected = [np.cos(a_val), -np.cos(a_val) * np.sin(b_val)]
        assert np.allclose(res.detach().numpy(), expected, atol=tol, rtol=0)

        loss = torch.sum(res)

        loss.backward()
        expected = [
            -np.sin(a_val) + np.sin(a_val) * np.sin(b_val),
            -np.cos(a_val) * np.cos(b_val)
        ]
        assert np.allclose(a.grad, expected[0], atol=tol, rtol=0)
        assert np.allclose(b.grad, expected[1], atol=tol, rtol=0)

        spy.assert_called()
コード例 #13
0
    def test_reusing_quantum_tape(self, tol):
        """Test re-using a quantum tape by passing new parameters"""
        a = torch.tensor(0.1, requires_grad=True)
        b = torch.tensor(0.2, requires_grad=True)

        dev = qml.device("default.qubit", wires=2)

        with TorchInterface.apply(QuantumTape()) as tape:
            qml.RY(a, wires=0)
            qml.RX(b, wires=1)
            qml.CNOT(wires=[0, 1])
            expval(qml.PauliZ(0))
            expval(qml.PauliY(1))

        assert tape.trainable_params == {0, 1}

        loss = torch.sum(tape.execute(dev))
        loss.backward()

        a_val = 0.54
        b_val = 0.8
        a = torch.tensor(a_val, requires_grad=True)
        b = torch.tensor(b_val, requires_grad=True)
        res2 = tape.execute(dev, params=[2 * a, b])

        expected = [np.cos(2 * a_val), -np.cos(2 * a_val) * np.sin(b_val)]
        assert np.allclose(res2.detach().numpy(), expected, atol=tol, rtol=0)

        loss = torch.sum(res2)
        loss.backward()

        expected = [
            -2 * np.sin(2 * a_val) + 2 * np.sin(2 * a_val) * np.sin(b_val),
            -np.cos(2 * a_val) * np.cos(b_val),
        ]

        assert np.allclose(a.grad, expected[0], atol=tol, rtol=0)
        assert np.allclose(b.grad, expected[1], atol=tol, rtol=0)
コード例 #14
0
    def test_matrix_parameter(self, U, tol):
        """Test that the Torch interface works correctly
        with a matrix parameter"""
        a_val = 0.1
        a = torch.tensor(a_val, requires_grad=True)

        dev = qml.device("default.qubit", wires=2)

        with TorchInterface.apply(QuantumTape()) as tape:
            qml.QubitUnitary(U, wires=0)
            qml.RY(a, wires=0)
            expval(qml.PauliZ(0))

        assert tape.trainable_params == {1}
        res = tape.execute(dev)

        assert np.allclose(res.detach().numpy(),
                           -np.cos(a_val),
                           atol=tol,
                           rtol=0)

        res.backward()
        assert np.allclose(a.grad, np.sin(a_val), atol=tol, rtol=0)
コード例 #15
0
    def test_no_trainable_parameters(self, tol):
        """Test evaluation and Jacobian if there are no trainable parameters"""
        dev = qml.device("default.qubit", wires=2)

        with TorchInterface.apply(QuantumTape()) as tape:
            qml.RY(0.2, wires=0)
            qml.RX(torch.tensor(0.1), wires=0)
            qml.CNOT(wires=[0, 1])
            expval(qml.PauliZ(0))
            expval(qml.PauliZ(1))

        assert tape.trainable_params == set()

        res = tape.execute(dev)

        assert res.shape == (2, )
        assert isinstance(res, torch.Tensor)

        with pytest.raises(
                RuntimeError,
                match=
                "element 0 of tensors does not require grad and does not have a grad_fn",
        ):
            res.backward()
コード例 #16
0
    def test_differentiable_expand(self, mocker, tol):
        """Test that operation and nested tapes expansion
        is differentiable"""
        mock = mocker.patch.object(qml.operation.Operation, "do_check_domain",
                                   False)

        class U3(qml.U3):
            def expand(self):
                tape = QuantumTape()
                theta, phi, lam = self.data
                wires = self.wires
                tape._ops += [
                    qml.Rot(lam, theta, -lam, wires=wires),
                    qml.PhaseShift(phi + lam, wires=wires),
                ]
                return tape

        tape = QuantumTape()

        dev = qml.device("default.qubit", wires=1)
        a = np.array(0.1)
        p_val = [0.1, 0.2, 0.3]
        p = torch.tensor(p_val, requires_grad=True)

        with tape:
            qml.RX(a, wires=0)
            U3(p[0], p[1], p[2], wires=0)
            expval(qml.PauliX(0))

        tape = TorchInterface.apply(tape.expand())

        assert tape.trainable_params == {1, 2, 3, 4}
        assert [i.name for i in tape.operations] == ["RX", "Rot", "PhaseShift"]

        tape_params = [i.detach().numpy() for i in tape.get_parameters()]
        assert np.allclose(
            tape_params, [p_val[2], p_val[0], -p_val[2], p_val[1] + p_val[2]],
            atol=tol,
            rtol=0)

        res = tape.execute(device=dev)

        expected = np.cos(a) * np.cos(p_val[1]) * np.sin(p_val[0]) + np.sin(
            a) * (np.cos(p_val[2]) * np.sin(p_val[1]) +
                  np.cos(p_val[0]) * np.cos(p_val[1]) * np.sin(p_val[2]))
        assert np.allclose(res.detach().numpy(), expected, atol=tol, rtol=0)

        res.backward()
        expected = np.array([
            np.cos(p_val[1]) *
            (np.cos(a) * np.cos(p_val[0]) -
             np.sin(a) * np.sin(p_val[0]) * np.sin(p_val[2])),
            np.cos(p_val[1]) * np.cos(p_val[2]) * np.sin(a) -
            np.sin(p_val[1]) *
            (np.cos(a) * np.sin(p_val[0]) +
             np.cos(p_val[0]) * np.sin(a) * np.sin(p_val[2])),
            np.sin(a) *
            (np.cos(p_val[0]) * np.cos(p_val[1]) * np.cos(p_val[2]) -
             np.sin(p_val[1]) * np.sin(p_val[2])),
        ])
        assert np.allclose(p.grad, expected, atol=tol, rtol=0)