def _convert_to_su4(U): r"""Check unitarity of a 4x4 matrix and convert it to :math:`SU(4)` if the determinant is not 1. Args: U (array[complex]): A matrix, presumed to be :math:`4 \times 4` and unitary. Returns: array[complex]: A :math:`4 \times 4` matrix in :math:`SU(4)` that is equivalent to U up to a global phase. """ # Check unitarity if not math.allclose( math.dot(U, math.T(math.conj(U))), math.eye(4), atol=1e-7): raise ValueError("Operator must be unitary.") # Compute the determinant det = math.linalg.det(U) # Convert to SU(4) if it's not close to 1 if not math.allclose(det, 1.0): exp_angle = -1j * math.cast_like(math.angle(det), 1j) / 4 U = math.cast_like(U, det) * math.exp(exp_angle) return U
def _convert_to_su2(U): r"""Check unitarity of a matrix and convert it to :math:`SU(2)` if possible. Args: U (array[complex]): A matrix, presumed to be :math:`2 \times 2` and unitary. Returns: array[complex]: A :math:`2 \times 2` matrix in :math:`SU(2)` that is equivalent to U up to a global phase. """ # Check unitarity if not math.allclose( math.dot(U, math.T(math.conj(U))), math.eye(2), atol=1e-7): raise ValueError("Operator must be unitary.") # Compute the determinant det = U[0, 0] * U[1, 1] - U[0, 1] * U[1, 0] # Convert to SU(2) if it's not close to 1 if not math.allclose(det, [1.0]): exp_angle = -1j * math.cast_like(math.angle(det), 1j) / 2 U = math.cast_like(U, exp_angle) * math.exp(exp_angle) return U
def _decomposition_3_cnots(U, wires): r"""The most general form of this decomposition is U = (A \otimes B) V (C \otimes D), where V is as depicted in the circuit below: -╭U- = -C--╭X--RZ(d)--╭C---------╭X--A- -╰U- = -D--╰C--RY(b)--╰X--RY(a)--╰C--B- """ # First we add a SWAP as per v1 of arXiv:0308033, which helps with some # rearranging of gates in the decomposition (it will cancel out the fact # that we need to add a SWAP to fix the determinant in another part later). swap_U = np.exp(1j * np.pi / 4) * math.dot(math.cast_like(SWAP, U), U) # Choose the rotation angles of RZ, RY in the two-qubit decomposition. # They are chosen as per Proposition V.1 in quant-ph/0308033 and are based # on the phases of the eigenvalues of :math:`E^\dagger \gamma(U) E`, where # \gamma(U) = (E^\dag U E) (E^\dag U E)^T. # The rotation angles can be computed as follows (any three eigenvalues can be used) u = math.dot(Edag, math.dot(swap_U, E)) gammaU = math.dot(u, math.T(u)) evs, _ = math.linalg.eig(gammaU) # We will sort the angles so that results are consistent across interfaces. angles = math.sort([math.angle(ev) for ev in evs]) x, y, z = angles[0], angles[1], angles[2] # Compute functions of the eigenvalues; there are different options in v1 # vs. v3 of the paper, I'm not entirely sure why. This is the version from v3. alpha = (x + y) / 2 beta = (x + z) / 2 delta = (z + y) / 2 # This is the interior portion of the decomposition circuit interior_decomp = [ qml.CNOT(wires=[wires[1], wires[0]]), qml.RZ(delta, wires=wires[0]), qml.RY(beta, wires=wires[1]), qml.CNOT(wires=wires), qml.RY(alpha, wires=wires[1]), qml.CNOT(wires=[wires[1], wires[0]]), ] # We need the matrix representation of this interior part, V, in order to # decompose U = (A \otimes B) V (C \otimes D) # # Looking at the decomposition above, V has determinant -1 (because there # are 3 CNOTs, each with determinant -1). The relationship between U and V # requires that both are in SU(4), so we add a SWAP after to V. We will see # how this gets fixed later. # # -╭V- = -╭X--RZ(d)--╭C---------╭X--╭SWAP- # -╰V- = -╰C--RY(b)--╰X--RY(a)--╰C--╰SWAP- RZd = qml.RZ(math.cast_like(delta, 1j), wires=wires[0]).matrix RYb = qml.RY(beta, wires=wires[0]).matrix RYa = qml.RY(alpha, wires=wires[0]).matrix V_mats = [ CNOT10, math.kron(RZd, RYb), CNOT01, math.kron(math.eye(2), RYa), CNOT10, SWAP ] V = math.convert_like(math.eye(4), U) for mat in V_mats: V = math.dot(math.cast_like(mat, U), V) # Now we need to find the four SU(2) operations A, B, C, D A, B, C, D = _extract_su2su2_prefactors(swap_U, V) # At this point, we have the following: # -╭U-╭SWAP- = --C--╭X-RZ(d)-╭C-------╭X-╭SWAP--A # -╰U-╰SWAP- = --D--╰C-RZ(b)-╰X-RY(a)-╰C-╰SWAP--B # # Using the relationship that SWAP(A \otimes B) SWAP = B \otimes A, # -╭U-╭SWAP- = --C--╭X-RZ(d)-╭C-------╭X--B--╭SWAP- # -╰U-╰SWAP- = --D--╰C-RZ(b)-╰X-RY(a)-╰C--A--╰SWAP- # # Now the SWAPs cancel, giving us the desired decomposition # (up to a global phase). # -╭U- = --C--╭X-RZ(d)-╭C-------╭X--B-- # -╰U- = --D--╰C-RZ(b)-╰X-RY(a)-╰C--A-- A_ops = zyz_decomposition(A, wires[1]) B_ops = zyz_decomposition(B, wires[0]) C_ops = zyz_decomposition(C, wires[0]) D_ops = zyz_decomposition(D, wires[1]) # Return the full decomposition return C_ops + D_ops + interior_decomp + A_ops + B_ops