コード例 #1
0
ファイル: gates.py プロジェクト: echertkov/qhack_vqe_ttn
def two_qubit_gate(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13,
                   p14, wires):
    # This is a parametrization of an arbitrary two-qubit gate
    # that is called the Cartan decomposition.
    one_qubit_gate(p0, p1, p2, wires[0])
    one_qubit_gate(p3, p4, p5, wires[1])

    # Rxx
    qml.Hadamard(wires=[wires[0]])
    qml.Hadamard(wires=[wires[1]])
    qml.MultiRZ(p6, wires=wires)
    qml.Hadamard(wires=[wires[0]])
    qml.Hadamard(wires=[wires[1]])

    # Ryy
    qml.inv(qml.S(wires=[wires[0]]))
    qml.Hadamard(wires=[wires[0]])
    qml.inv(qml.S(wires=[wires[1]]))
    qml.Hadamard(wires=[wires[1]])
    qml.MultiRZ(p7, wires=wires)
    qml.Hadamard(wires=[wires[0]])
    qml.S(wires=[wires[0]])
    qml.Hadamard(wires=[wires[1]])
    qml.S(wires=[wires[1]])

    # Rzz
    qml.MultiRZ(p8, wires=wires)

    one_qubit_gate(p9, p10, p11, wires[0])
    one_qubit_gate(p12, p13, p14, wires[1])
コード例 #2
0
    def test_native_inverse_gates(self):
        """Test that a circuit containing inverse gates that are supported
        natively by QASM, such as sdg, are correctly serialized."""
        ops = [
            qml.S(wires=0),
            qml.S(wires=0).inv(),
            qml.T(wires=0),
            qml.T(wires=0).inv(),
        ]

        circuit = CircuitGraph(ops, {})
        res = circuit.to_openqasm()

        expected = dedent("""\
            OPENQASM 2.0;
            include "qelib1.inc";
            qreg q[1];
            creg c[1];
            s q[0];
            sdg q[0];
            t q[0];
            tdg q[0];
            measure q[0] -> c[0];
            """)

        assert res == expected
コード例 #3
0
ファイル: ops.py プロジェクト: ldabas/QuantumResearch
 def decomposition(wires):
     return [
         qml.SWAP(wires=wires),
         qml.S(wires=[wires[0]]),
         qml.S(wires=[wires[1]]),
         qml.CZ(wires=wires),
     ]
コード例 #4
0
def test_translate_result_type_unsupported_obs():
    """Tests if a TypeError is raised by translate_result_type for an unknown observable"""
    obs = qml.S(wires=0)
    obs.return_type = None

    with pytest.raises(TypeError, match="Unsupported observable"):
        translate_result_type(obs, [0], frozenset())
コード例 #5
0
class TestOperations:
    """Tests for the operations"""
    @pytest.mark.parametrize(
        "op",
        [
            (qml.Hadamard(wires=0)),
            (qml.PauliX(wires=0)),
            (qml.PauliY(wires=0)),
            (qml.PauliZ(wires=0)),
            (qml.S(wires=0)),
            (qml.T(wires=0)),
            (qml.SX(wires=0)),
            (qml.RX(0.3, wires=0)),
            (qml.RY(0.3, wires=0)),
            (qml.RZ(0.3, wires=0)),
            (qml.PhaseShift(0.3, wires=0)),
            (qml.Rot(0.3, 0.4, 0.5, wires=0)),
        ],
    )
    def test_single_qubit_rot_angles(self, op):
        """Tests that the Rot gates yielded by single_qubit_rot_angles
        are equivalent to the true operations up to a global phase."""
        angles = op.single_qubit_rot_angles()
        obtained_mat = qml.Rot(*angles, wires=0).matrix

        # Check whether the two matrices are each others conjugate transposes
        mat_product = qml.math.dot(op.matrix, qml.math.conj(obtained_mat.T))
        mat_product /= mat_product[0, 0]

        assert qml.math.allclose(mat_product, I)
コード例 #6
0
 def qfunc():
     qml.RZ(0.3, wires="a")
     qml.RY(0.5, wires="a")
     qml.Rot(0.1, 0.2, 0.3, wires="b")
     qml.RX(0.1, wires="a")
     qml.CNOT(wires=["b", "a"])
     qml.SX(wires="b")
     qml.S(wires="b")
     qml.PhaseShift(0.3, wires="b")
コード例 #7
0
ファイル: test_collections.py プロジェクト: thisac/pennylane
    def test_invalid_observable(self):
        """Test that an invalid observable raises an exception"""
        dev = qml.device("default.qubit", wires=1)

        obs_list = [qml.PauliX(0), qml.S(wires=0)]
        template = lambda x, wires: qml.RX(x, wires=0)

        with pytest.raises(ValueError, match="Some or all observables are not valid"):
            qml.map(template, obs_list, dev, measure=["expval", "var"])
コード例 #8
0
    def test_apply_operation_S(self, wires):
        """Tests that the _apply_operation method correctly populates the circuit
        queue when a PennyLane S operation is provided."""

        dev = AQTDevice(3, api_key=SOME_API_KEY)
        assert dev.circuit == []

        dev._apply_operation(qml.S(wires=wires))

        assert dev.circuit == [["Z", 0.5, wires]]
コード例 #9
0
def qfunc(theta):
    qml.PauliX(wires=2)
    qml.S(wires=0)
    qml.CNOT(wires=[0, 1])
    qml.PauliY(wires=1)
    qml.CRY(theta[0], wires=[2, 1])
    qml.PhaseShift(theta[1], wires=0)
    qml.T(wires=0)
    qml.Toffoli(wires=[0, 1, 2])
    return qml.expval(qml.PauliZ(0))
コード例 #10
0
        def qfunc():
            qml.CZ(wires=[0, 2])
            qml.PauliZ(wires=2)
            qml.S(wires=0)

            qml.CNOT(wires=[0, 1])

            qml.CRZ(0.5, wires=[0, 1])
            qml.RZ(0.2, wires=2)
            qml.T(wires=0)
            qml.PauliZ(wires=0)
コード例 #11
0
    def test_unsupported_gate(self):
        """Test an exception is raised if an unsupported operation is
        applied."""
        with qml.tape.QuantumTape() as circuit:
            qml.S(wires=0), qml.DoubleExcitationPlus(0.5, wires=[0, 1, 2, 3])

        with pytest.raises(
                ValueError,
                match=
                "DoubleExcitationPlus not supported by the QASM serializer"):
            res = circuit.to_openqasm()
コード例 #12
0
    def test_unsupported_gate(self):
        """Test an exception is raised if an unsupported operation is
        applied."""
        U = np.array([[1, 1], [1, -1]]) / np.sqrt(2)

        with qml.tape.QuantumTape() as circuit:
            qml.S(wires=0), qml.QubitUnitary(U, wires=[0, 1])

        with pytest.raises(
                ValueError,
                match="QubitUnitary not supported by the QASM serializer"):
            res = circuit.to_openqasm()
コード例 #13
0
    def test_unsupported_gate(self):
        """Test an exception is raised if an unsupported operation is
        applied."""
        U = np.array([[1, 1], [1, -1]]) / np.sqrt(2)
        ops = [qml.S(wires=0), qml.QubitUnitary(U, wires=[0, 1])]

        circuit = CircuitGraph(ops, {}, Wires([0, 1]))

        with pytest.raises(
                ValueError,
                match="QubitUnitary not supported by the QASM serializer"):
            res = circuit.to_openqasm()
コード例 #14
0
def op(op_name):
    ops_list = {
        "RX": qml.RX(0.123, wires=0),
        "RY": qml.RY(1.434, wires=0),
        "RZ": qml.RZ(2.774, wires=0),
        "S": qml.S(wires=0),
        "SX": qml.SX(wires=0),
        "T": qml.T(wires=0),
        "CNOT": qml.CNOT(wires=[0, 1]),
        "CZ": qml.CZ(wires=[0, 1]),
        "CY": qml.CY(wires=[0, 1]),
        "SWAP": qml.SWAP(wires=[0, 1]),
        "ISWAP": qml.ISWAP(wires=[0, 1]),
        "SISWAP": qml.SISWAP(wires=[0, 1]),
        "SQISW": qml.SQISW(wires=[0, 1]),
        "CSWAP": qml.CSWAP(wires=[0, 1, 2]),
        "PauliRot": qml.PauliRot(0.123, "Y", wires=0),
        "IsingXX": qml.IsingXX(0.123, wires=[0, 1]),
        "IsingXY": qml.IsingXY(0.123, wires=[0, 1]),
        "IsingYY": qml.IsingYY(0.123, wires=[0, 1]),
        "IsingZZ": qml.IsingZZ(0.123, wires=[0, 1]),
        "Identity": qml.Identity(wires=0),
        "Rot": qml.Rot(0.123, 0.456, 0.789, wires=0),
        "Toffoli": qml.Toffoli(wires=[0, 1, 2]),
        "PhaseShift": qml.PhaseShift(2.133, wires=0),
        "ControlledPhaseShift": qml.ControlledPhaseShift(1.777, wires=[0, 2]),
        "CPhase": qml.CPhase(1.777, wires=[0, 2]),
        "MultiRZ": qml.MultiRZ(0.112, wires=[1, 2, 3]),
        "CRX": qml.CRX(0.836, wires=[2, 3]),
        "CRY": qml.CRY(0.721, wires=[2, 3]),
        "CRZ": qml.CRZ(0.554, wires=[2, 3]),
        "Hadamard": qml.Hadamard(wires=0),
        "PauliX": qml.PauliX(wires=0),
        "PauliY": qml.PauliY(wires=0),
        "PauliZ": qml.PauliZ(wires=0),
        "CRot": qml.CRot(0.123, 0.456, 0.789, wires=[0, 1]),
        "DiagonalQubitUnitary": qml.DiagonalQubitUnitary(np.array([1.0, 1.0j]), wires=1),
        "ControlledQubitUnitary": qml.ControlledQubitUnitary(
            np.eye(2) * 1j, wires=[0], control_wires=[2]
        ),
        "MultiControlledX": qml.MultiControlledX(wires=(0, 1, 2), control_values="01"),
        "SingleExcitation": qml.SingleExcitation(0.123, wires=[0, 3]),
        "SingleExcitationPlus": qml.SingleExcitationPlus(0.123, wires=[0, 3]),
        "SingleExcitationMinus": qml.SingleExcitationMinus(0.123, wires=[0, 3]),
        "DoubleExcitation": qml.DoubleExcitation(0.123, wires=[0, 1, 2, 3]),
        "DoubleExcitationPlus": qml.DoubleExcitationPlus(0.123, wires=[0, 1, 2, 3]),
        "DoubleExcitationMinus": qml.DoubleExcitationMinus(0.123, wires=[0, 1, 2, 3]),
        "QFT": qml.QFT(wires=0),
        "QubitSum": qml.QubitSum(wires=[0, 1, 2]),
        "QubitCarry": qml.QubitCarry(wires=[0, 1, 2, 3]),
        "QubitUnitary": qml.QubitUnitary(np.eye(2) * 1j, wires=0),
    }
    return ops_list.get(op_name)
コード例 #15
0
    def test_four_qubit_random_circuit(self, device, tol):
        """Compare a four-qubit random circuit with lots of different gates to default.qubit"""
        n_wires = 4
        dev = device(n_wires)
        dev_def = qml.device("default.qubit", wires=n_wires)

        if dev.name == dev_def.name:
            pytest.skip("Device is default.qubit.")

        if dev.shots is not None:
            pytest.skip("Device is in non-analytical mode.")

        gates = [
            qml.PauliX(wires=0),
            qml.PauliY(wires=1),
            qml.PauliZ(wires=2),
            qml.S(wires=3),
            qml.T(wires=0),
            qml.RX(2.3, wires=1),
            qml.RY(1.3, wires=2),
            qml.RZ(3.3, wires=3),
            qml.Hadamard(wires=0),
            qml.Rot(0.1, 0.2, 0.3, wires=1),
            qml.CRot(0.1, 0.2, 0.3, wires=[2, 3]),
            qml.Toffoli(wires=[0, 1, 2]),
            qml.SWAP(wires=[1, 2]),
            qml.CSWAP(wires=[1, 2, 3]),
            qml.U1(1.0, wires=0),
            qml.U2(1.0, 2.0, wires=2),
            qml.U3(1.0, 2.0, 3.0, wires=3),
            qml.CRX(0.1, wires=[1, 2]),
            qml.CRY(0.2, wires=[2, 3]),
            qml.CRZ(0.3, wires=[3, 1]),
        ]

        layers = 3
        np.random.seed(1967)
        gates_per_layers = [np.random.permutation(gates).numpy() for _ in range(layers)]

        def circuit():
            """4-qubit circuit with layers of randomly selected gates and random connections for
            multi-qubit gates."""
            np.random.seed(1967)
            for gates in gates_per_layers:
                for gate in gates:
                    qml.apply(gate)
            return qml.expval(qml.PauliZ(0))

        qnode_def = qml.QNode(circuit, dev_def)
        qnode = qml.QNode(circuit, dev)

        assert np.allclose(qnode(), qnode_def(), atol=tol(dev.shots))
コード例 #16
0
    def test_s_decomposition(self, tol):
        """Tests that the decomposition of the S gate is correct"""
        op = qml.S(wires=0)
        res = op.decomposition(0)

        assert len(res) == 1

        assert res[0].name == "PhaseShift"
        assert res[0].wires == [0]  #qml.wires.Wires([0])
        assert res[0].params[0] == np.pi / 2

        decomposed_matrix = res[0].matrix
        assert np.allclose(decomposed_matrix, op.matrix, atol=tol, rtol=0)
コード例 #17
0
def qfunc(theta):
    qml.Hadamard(wires=0)
    qml.PauliX(wires=1)
    qml.S(wires=1)
    qml.adjoint(qml.S)(wires=1)
    qml.Hadamard(wires=0)
    qml.CNOT(wires=[0, 1])
    qml.RZ(theta[0], wires=2)
    qml.PauliX(wires=1)
    qml.CZ(wires=[1, 0])
    qml.RY(theta[1], wires=2)
    qml.CZ(wires=[0, 1])
    return qml.expval(qml.PauliX(0) @ qml.PauliX(2))
コード例 #18
0
def one_qubit_block(wires=None):
    """A block containing all of the supported gates in ``lightning.qubit``"""
    qml.PauliX(wires=wires)
    qml.PauliY(wires=wires)
    qml.S(wires=wires)
    qml.Hadamard(wires=wires)
    qml.PauliX(wires=wires)
    qml.T(wires=wires)
    qml.PhaseShift(-1, wires=wires)
    qml.Rot(0.1, 0.2, 0.3, wires=wires)
    qml.RZ(0.11, wires=wires)
    qml.RY(0.22, wires=wires)
    qml.RX(0.33, wires=wires)
    qml.PauliX(wires=wires)
コード例 #19
0
 def qfunc():
     qml.PauliX(wires=1)
     qml.S(wires=0)
     qml.CZ(wires=[0, 1])
     qml.CNOT(wires=[1, 0])
     qml.PauliY(wires=1)
     qml.CRY(0.5, wires=[1, 0])
     qml.PhaseShift(0.2, wires=0)
     qml.PauliY(wires=1)
     qml.T(wires=0)
     qml.CRZ(-0.3, wires=[0, 1])
     qml.RZ(0.2, wires=0)
     qml.PauliZ(wires=0)
     qml.PauliX(wires=1)
     qml.CRY(0.2, wires=[1, 0])
コード例 #20
0
    def test_native_inverse_gates(self):
        """Test that a circuit containing inverse gates that are supported
        natively by QASM, such as sdg, are correctly serialized."""
        with qml.tape.QuantumTape() as circuit:
            qml.S(wires=0)
            qml.S(wires=0).inv()
            qml.T(wires=0)
            qml.T(wires=0).inv(),

        res = circuit.to_openqasm()

        expected = dedent("""\
            OPENQASM 2.0;
            include "qelib1.inc";
            qreg q[1];
            creg c[1];
            s q[0];
            sdg q[0];
            t q[0];
            tdg q[0];
            measure q[0] -> c[0];
            """)

        assert res == expected
コード例 #21
0
    def test_four_qubit_random_circuit(self, shots):
        """Test a four-qubit random circuit with the whole set of possible gates,
        the test is analog to a failing device test and is used to check the try/except
        expval function from the mixed_simulator device."""
        dev = qml.device("cirq.mixedsimulator", wires=4)

        gates = [
            qml.PauliX(wires=0),
            qml.PauliY(wires=1),
            qml.PauliZ(wires=2),
            qml.S(wires=3),
            qml.T(wires=0),
            qml.RX(2.3, wires=1),
            qml.RY(1.3, wires=2),
            qml.RZ(3.3, wires=3),
            qml.Hadamard(wires=0),
            qml.Rot(0.1, 0.2, 0.3, wires=1),
            qml.CRot(0.1, 0.2, 0.3, wires=[2, 3]),
            qml.Toffoli(wires=[0, 1, 2]),
            qml.SWAP(wires=[1, 2]),
            qml.CSWAP(wires=[1, 2, 3]),
            qml.U1(1.0, wires=0),
            qml.U2(1.0, 2.0, wires=2),
            qml.U3(1.0, 2.0, 3.0, wires=3),
            qml.CRX(0.1, wires=[1, 2]),
            qml.CRY(0.2, wires=[2, 3]),
            qml.CRZ(0.3, wires=[3, 1]),
        ]

        layers = 3
        np.random.seed(1967)
        gates_per_layers = [pnp.random.permutation(gates).numpy() for _ in range(layers)]

        def circuit():
            """4-qubit circuit with layers of randomly selected gates and random connections for
            multi-qubit gates."""
            np.random.seed(1967)
            for gates in gates_per_layers:
                for gate in gates:
                    qml.apply(gate)
            return qml.expval(qml.PauliZ(0))

        qnode = qml.QNode(circuit, dev)
        assert np.allclose(qnode(), 0.0)
コード例 #22
0
def test_integration():
    gates = [
        qml.PauliX(wires=0),
        qml.PauliY(wires=0),
        qml.PauliZ(wires=0),
        qml.S(wires=0),
        qml.T(wires=0),
        qml.RX(0.4, wires=0),
        qml.RY(0.4, wires=0),
        qml.RZ(0.4, wires=0),
        qml.Hadamard(wires=0),
        qml.Rot(0.4, 0.5, 0.6, wires=1),
        qml.CRot(0.4, 0.5, 0.6, wires=(0, 1)),
        qml.Toffoli(wires=(0, 1, 2)),
        qml.SWAP(wires=(0, 1)),
        qml.CSWAP(wires=(0, 1, 2)),
        qml.U1(0.4, wires=0),
        qml.U2(0.4, 0.5, wires=0),
        qml.U3(0.4, 0.5, 0.6, wires=0),
        qml.CRX(0.4, wires=(0, 1)),
        qml.CRY(0.4, wires=(0, 1)),
        qml.CRZ(0.4, wires=(0, 1)),
    ]

    layers = 3
    np.random.seed(1967)
    gates_per_layers = [np.random.permutation(gates) for _ in range(layers)]

    with qml.tape.QuantumTape() as tape:
        np.random.seed(1967)
        for gates in gates_per_layers:
            for gate in gates:
                qml.apply(gate)

    base_circ = from_pennylane(tape)
    tape_recovered = to_pennylane(base_circ)
    circ_recovered = from_pennylane(tape_recovered)
    u_1 = cirq.unitary(base_circ)
    u_2 = cirq.unitary(circ_recovered)
    cirq.testing.assert_allclose_up_to_global_phase(u_1, u_2, atol=0)
コード例 #23
0
class TestOperations:
    """Tests that the CirqDevice correctly handles the requested operations."""
    def test_reset_on_empty_circuit(self, cirq_device_1_wire):
        """Tests that reset resets the internal circuit when it is not initialized."""

        assert cirq_device_1_wire.circuit is None

        cirq_device_1_wire.reset()

        # Check if circuit is an empty cirq.Circuit
        assert cirq_device_1_wire.circuit == cirq.Circuit()

    def test_reset_on_full_circuit(self, cirq_device_1_wire):
        """Tests that reset resets the internal circuit when it is filled."""

        cirq_device_1_wire.reset()
        cirq_device_1_wire.apply([qml.PauliX(0)])

        # Assert that the queue is filled
        assert list(cirq_device_1_wire.circuit.all_operations())

        cirq_device_1_wire.reset()

        # Assert that the queue is empty
        assert not list(cirq_device_1_wire.circuit.all_operations())

    @pytest.mark.parametrize(
        "gate,expected_cirq_gates",
        [
            (qml.PauliX(wires=[0]), [cirq.X]),
            (qml.PauliY(wires=[0]), [cirq.Y]),
            (qml.PauliZ(wires=[0]), [cirq.Z]),
            (qml.PauliX(wires=[0]).inv(), [cirq.X**-1]),
            (qml.PauliY(wires=[0]).inv(), [cirq.Y**-1]),
            (qml.PauliZ(wires=[0]).inv(), [cirq.Z**-1]),
            (qml.Hadamard(wires=[0]), [cirq.H]),
            (qml.Hadamard(wires=[0]).inv(), [cirq.H**-1]),
            (qml.S(wires=[0]), [cirq.S]),
            (qml.S(wires=[0]).inv(), [cirq.S**-1]),
            (qml.PhaseShift(1.4,
                            wires=[0]), [cirq.ZPowGate(exponent=1.4 / np.pi)]),
            (qml.PhaseShift(
                -1.2, wires=[0]), [cirq.ZPowGate(exponent=-1.2 / np.pi)]),
            (qml.PhaseShift(2, wires=[0]), [cirq.ZPowGate(exponent=2 / np.pi)
                                            ]),
            (
                qml.PhaseShift(1.4, wires=[0]).inv(),
                [cirq.ZPowGate(exponent=-1.4 / np.pi)],
            ),
            (
                qml.PhaseShift(-1.2, wires=[0]).inv(),
                [cirq.ZPowGate(exponent=1.2 / np.pi)],
            ),
            (qml.PhaseShift(
                2, wires=[0]).inv(), [cirq.ZPowGate(exponent=-2 / np.pi)]),
            (qml.RX(1.4, wires=[0]), [cirq.rx(1.4)]),
            (qml.RX(-1.2, wires=[0]), [cirq.rx(-1.2)]),
            (qml.RX(2, wires=[0]), [cirq.rx(2)]),
            (qml.RX(1.4, wires=[0]).inv(), [cirq.rx(-1.4)]),
            (qml.RX(-1.2, wires=[0]).inv(), [cirq.rx(1.2)]),
            (qml.RX(2, wires=[0]).inv(), [cirq.rx(-2)]),
            (qml.RY(1.4, wires=[0]), [cirq.ry(1.4)]),
            (qml.RY(0, wires=[0]), [cirq.ry(0)]),
            (qml.RY(-1.3, wires=[0]), [cirq.ry(-1.3)]),
            (qml.RY(1.4, wires=[0]).inv(), [cirq.ry(-1.4)]),
            (qml.RY(0, wires=[0]).inv(), [cirq.ry(0)]),
            (qml.RY(-1.3, wires=[0]).inv(), [cirq.ry(+1.3)]),
            (qml.RZ(1.4, wires=[0]), [cirq.rz(1.4)]),
            (qml.RZ(-1.1, wires=[0]), [cirq.rz(-1.1)]),
            (qml.RZ(1, wires=[0]), [cirq.rz(1)]),
            (qml.RZ(1.4, wires=[0]).inv(), [cirq.rz(-1.4)]),
            (qml.RZ(-1.1, wires=[0]).inv(), [cirq.rz(1.1)]),
            (qml.RZ(1, wires=[0]).inv(), [cirq.rz(-1)]),
            (
                qml.Rot(1.4, 2.3, -1.2, wires=[0]),
                [cirq.rz(1.4), cirq.ry(2.3),
                 cirq.rz(-1.2)],
            ),
            (qml.Rot(1, 2, -1, wires=[0]),
             [cirq.rz(1), cirq.ry(2), cirq.rz(-1)]),
            (
                qml.Rot(-1.1, 0.2, -1, wires=[0]),
                [cirq.rz(-1.1), cirq.ry(0.2),
                 cirq.rz(-1)],
            ),
            (
                qml.Rot(1.4, 2.3, -1.2, wires=[0]).inv(),
                [cirq.rz(1.2), cirq.ry(-2.3),
                 cirq.rz(-1.4)],
            ),
            (
                qml.Rot(1, 2, -1, wires=[0]).inv(),
                [cirq.rz(1), cirq.ry(-2), cirq.rz(-1)],
            ),
            (
                qml.Rot(-1.1, 0.2, -1, wires=[0]).inv(),
                [cirq.rz(1), cirq.ry(-0.2),
                 cirq.rz(1.1)],
            ),
            (
                qml.QubitUnitary(np.array([[1, 0], [0, 1]]), wires=[0]),
                [cirq.MatrixGate(np.array([[1, 0], [0, 1]]))],
            ),
            (
                qml.QubitUnitary(np.array([[1, 0], [0, -1]]), wires=[0]),
                [cirq.MatrixGate(np.array([[1, 0], [0, -1]]))],
            ),
            (
                qml.QubitUnitary(np.array([[-1, 1], [1, 1]]) / math.sqrt(2),
                                 wires=[0]),
                [cirq.MatrixGate(np.array([[-1, 1], [1, 1]]) / math.sqrt(2))],
            ),
            (
                qml.QubitUnitary(np.array([[1, 0], [0, 1]]), wires=[0]).inv(),
                [cirq.MatrixGate(np.array([[1, 0], [0, 1]]))**-1],
            ),
            (
                qml.QubitUnitary(np.array([[1, 0], [0, -1]]), wires=[0]).inv(),
                [cirq.MatrixGate(np.array([[1, 0], [0, -1]]))**-1],
            ),
            (
                qml.QubitUnitary(np.array([[-1, 1], [1, 1]]) / math.sqrt(2),
                                 wires=[0]).inv(),
                [
                    cirq.MatrixGate(
                        np.array([[-1, 1], [1, 1]]) / math.sqrt(2))**-1
                ],
            ),
        ],
    )
    def test_apply_single_wire(self, cirq_device_1_wire, gate,
                               expected_cirq_gates):
        """Tests that apply adds the correct gates to the circuit for single-qubit gates."""

        cirq_device_1_wire.reset()

        cirq_device_1_wire.apply([gate])

        ops = list(cirq_device_1_wire.circuit.all_operations())

        assert len(ops) == len(expected_cirq_gates)

        for i in range(len(ops)):
            assert ops[i]._gate == expected_cirq_gates[i]

    @pytest.mark.parametrize(
        "gate,expected_cirq_gates",
        [
            (qml.CNOT(wires=[0, 1]), [cirq.CNOT]),
            (qml.CNOT(wires=[0, 1]).inv(), [cirq.CNOT**-1]),
            (qml.SWAP(wires=[0, 1]), [cirq.SWAP]),
            (qml.SWAP(wires=[0, 1]).inv(), [cirq.SWAP**-1]),
            (qml.CZ(wires=[0, 1]), [cirq.CZ]),
            (qml.CZ(wires=[0, 1]).inv(), [cirq.CZ**-1]),
            (qml.CRX(1.4, wires=[0, 1]), [cirq.ControlledGate(cirq.rx(1.4))]),
            (qml.CRX(-1.2, wires=[0, 1]), [cirq.ControlledGate(cirq.rx(-1.2))
                                           ]),
            (qml.CRX(2, wires=[0, 1]), [cirq.ControlledGate(cirq.rx(2))]),
            (qml.CRX(1.4, wires=[0, 1]).inv(),
             [cirq.ControlledGate(cirq.rx(-1.4))]),
            (qml.CRX(-1.2,
                     wires=[0, 1]).inv(), [cirq.ControlledGate(cirq.rx(1.2))]),
            (qml.CRX(2, wires=[0, 1
                               ]).inv(), [cirq.ControlledGate(cirq.rx(-2))]),
            (qml.CRY(1.4, wires=[0, 1]), [cirq.ControlledGate(cirq.ry(1.4))]),
            (qml.CRY(0, wires=[0, 1]), [cirq.ControlledGate(cirq.ry(0))]),
            (qml.CRY(-1.3, wires=[0, 1]), [cirq.ControlledGate(cirq.ry(-1.3))
                                           ]),
            (qml.CRY(1.4, wires=[0, 1]).inv(),
             [cirq.ControlledGate(cirq.ry(-1.4))]),
            (qml.CRY(0, wires=[0, 1]).inv(), [cirq.ControlledGate(cirq.ry(0))
                                              ]),
            (qml.CRY(-1.3,
                     wires=[0, 1]).inv(), [cirq.ControlledGate(cirq.ry(1.3))]),
            (qml.CRZ(1.4, wires=[0, 1]), [cirq.ControlledGate(cirq.rz(1.4))]),
            (qml.CRZ(-1.1, wires=[0, 1]), [cirq.ControlledGate(cirq.rz(-1.1))
                                           ]),
            (qml.CRZ(1, wires=[0, 1]), [cirq.ControlledGate(cirq.rz(1))]),
            (qml.CRZ(1.4, wires=[0, 1]).inv(),
             [cirq.ControlledGate(cirq.rz(-1.4))]),
            (qml.CRZ(-1.1,
                     wires=[0, 1]).inv(), [cirq.ControlledGate(cirq.rz(1.1))]),
            (qml.CRZ(1, wires=[0, 1
                               ]).inv(), [cirq.ControlledGate(cirq.rz(-1))]),
            (
                qml.CRot(1.4, 2.3, -1.2, wires=[0, 1]),
                [
                    cirq.ControlledGate(cirq.rz(1.4)),
                    cirq.ControlledGate(cirq.ry(2.3)),
                    cirq.ControlledGate(cirq.rz(-1.2)),
                ],
            ),
            (
                qml.CRot(1, 2, -1, wires=[0, 1]),
                [
                    cirq.ControlledGate(cirq.rz(1)),
                    cirq.ControlledGate(cirq.ry(2)),
                    cirq.ControlledGate(cirq.rz(-1)),
                ],
            ),
            (
                qml.CRot(-1.1, 0.2, -1, wires=[0, 1]),
                [
                    cirq.ControlledGate(cirq.rz(-1.1)),
                    cirq.ControlledGate(cirq.ry(0.2)),
                    cirq.ControlledGate(cirq.rz(-1)),
                ],
            ),
            (
                qml.CRot(1.4, 2.3, -1.2, wires=[0, 1]).inv(),
                [
                    cirq.ControlledGate(cirq.rz(1.2)),
                    cirq.ControlledGate(cirq.ry(-2.3)),
                    cirq.ControlledGate(cirq.rz(-1.4)),
                ],
            ),
            (
                qml.CRot(1, 2, -1, wires=[0, 1]).inv(),
                [
                    cirq.ControlledGate(cirq.rz(1)),
                    cirq.ControlledGate(cirq.ry(-2)),
                    cirq.ControlledGate(cirq.rz(-1)),
                ],
            ),
            (
                qml.CRot(-1.1, 0.2, -1, wires=[0, 1]).inv(),
                [
                    cirq.ControlledGate(cirq.rz(1)),
                    cirq.ControlledGate(cirq.ry(-0.2)),
                    cirq.ControlledGate(cirq.rz(1.1)),
                ],
            ),
            (qml.QubitUnitary(np.eye(4),
                              wires=[0, 1]), [cirq.MatrixGate(np.eye(4))]),
            (
                qml.QubitUnitary(
                    np.array([[0, 0, 0, 1], [0, 0, 1, 0], [0, 1, 0, 0],
                              [1, 0, 0, 0]]),
                    wires=[0, 1],
                ),
                [
                    cirq.MatrixGate(
                        np.array([[0, 0, 0, 1], [0, 0, 1, 0], [0, 1, 0, 0],
                                  [1, 0, 0, 0]]))
                ],
            ),
            (
                qml.QubitUnitary(
                    np.array([[1, -1, -1, 1], [-1, -1, 1, 1], [-1, 1, -1, 1],
                              [1, 1, 1, 1]]) / 2,
                    wires=[0, 1],
                ),
                [
                    cirq.MatrixGate(
                        np.array([
                            [1, -1, -1, 1],
                            [-1, -1, 1, 1],
                            [-1, 1, -1, 1],
                            [1, 1, 1, 1],
                        ]) / 2)
                ],
            ),
            (
                qml.QubitUnitary(np.eye(4), wires=[0, 1]).inv(),
                [cirq.MatrixGate(np.eye(4))**-1],
            ),
            (
                qml.QubitUnitary(
                    np.array([[0, 0, 0, 1], [0, 0, 1, 0], [0, 1, 0, 0],
                              [1, 0, 0, 0]]),
                    wires=[0, 1],
                ).inv(),
                [
                    cirq.MatrixGate(
                        np.array([[0, 0, 0, 1], [0, 0, 1, 0], [0, 1, 0, 0],
                                  [1, 0, 0, 0]]))**-1
                ],
            ),
            (
                qml.QubitUnitary(
                    np.array([[1, -1, -1, 1], [-1, -1, 1, 1], [-1, 1, -1, 1],
                              [1, 1, 1, 1]]) / 2,
                    wires=[0, 1],
                ).inv(),
                [
                    cirq.MatrixGate(
                        np.array([
                            [1, -1, -1, 1],
                            [-1, -1, 1, 1],
                            [-1, 1, -1, 1],
                            [1, 1, 1, 1],
                        ]) / 2)**-1
                ],
            ),
        ],
    )
    def test_apply_two_wires(self, cirq_device_2_wires, gate,
                             expected_cirq_gates):
        """Tests that apply adds the correct gates to the circuit for two-qubit gates."""

        cirq_device_2_wires.reset()

        cirq_device_2_wires.apply([gate])

        ops = list(cirq_device_2_wires.circuit.all_operations())

        assert len(ops) == len(expected_cirq_gates)

        for i in range(len(ops)):
            assert ops[i].gate == expected_cirq_gates[i]
コード例 #24
0
class TestProgramConverter:
    """Test that PyQuil Program instances are properly converted."""
    @pytest.mark.parametrize(
        "pyquil_operation,expected_pl_operation",
        [
            (g.I(0), qml.Identity(wires=[0])),
            (g.H(0), qml.Hadamard(0)),
            (g.H(0).dagger(), qml.Hadamard(0).inv()),
            (g.H(0).dagger().dagger(), qml.Hadamard(0).inv().inv()),
            (g.S(0), qml.S(wires=[0])),
            (g.S(0).dagger(), qml.S(wires=[0]).inv()),
            (g.S(0).dagger().dagger(), qml.S(wires=[0]).inv().inv()),
            (g.T(0), qml.T(wires=[0])),
            (g.T(0).dagger(), qml.T(wires=[0]).inv()),
            (g.T(0).dagger().dagger(), qml.T(wires=[0]).inv().inv()),
            (g.X(0), qml.PauliX(0)),
            (g.X(0).dagger(), qml.PauliX(0).inv()),
            (g.X(0).dagger().dagger(), qml.PauliX(0).inv().inv()),
            (g.X(0).controlled(1), qml.CNOT(wires=[1, 0])),
            (g.X(0).controlled(1).dagger(), qml.CNOT(wires=[1, 0]).inv()),
            (g.X(0).controlled(1).dagger().dagger(),
             qml.CNOT(wires=[1, 0]).inv().inv()),
            (g.X(0).controlled(1).controlled(2),
             plf.ops.CCNOT(wires=[2, 1, 0])),
            (g.X(0).controlled(1).controlled(2).dagger(),
             plf.ops.CCNOT(wires=[2, 1, 0]).inv()),
            (
                g.X(0).controlled(1).controlled(2).dagger().dagger(),
                plf.ops.CCNOT(wires=[2, 1, 0]).inv().inv(),
            ),
            (g.Y(0), qml.PauliY(0)),
            (g.Y(0).dagger(), qml.PauliY(0).inv()),
            (g.Y(0).dagger().dagger(), qml.PauliY(0).inv().inv()),
            (g.Z(0), qml.PauliZ(0)),
            (g.Z(0).dagger(), qml.PauliZ(0).inv()),
            (g.Z(0).dagger().dagger(), qml.PauliZ(0).inv().inv()),
            (g.Z(0).controlled(1), qml.CZ(wires=[1, 0])),
            (g.Z(0).controlled(1).dagger(), qml.CZ(wires=[1, 0]).inv()),
            (g.Z(0).controlled(1).dagger().dagger(),
             qml.CZ(wires=[1, 0]).inv().inv()),
            (g.CNOT(0, 1), qml.CNOT(wires=[0, 1])),
            (g.CNOT(0, 1).dagger(), qml.CNOT(wires=[0, 1]).inv()),
            (g.CNOT(0,
                    1).dagger().dagger(), qml.CNOT(wires=[0, 1]).inv().inv()),
            (g.CNOT(0, 1).controlled(2), plf.ops.CCNOT(wires=[2, 0, 1])),
            (g.CNOT(0, 1).controlled(2).dagger(),
             plf.ops.CCNOT(wires=[2, 0, 1]).inv()),
            (
                g.CNOT(0, 1).controlled(2).dagger().dagger(),
                plf.ops.CCNOT(wires=[2, 0, 1]).inv().inv(),
            ),
            (g.SWAP(0, 1), qml.SWAP(wires=[0, 1])),
            (g.SWAP(0, 1).dagger(), qml.SWAP(wires=[0, 1]).inv()),
            (g.SWAP(0,
                    1).dagger().dagger(), qml.SWAP(wires=[0, 1]).inv().inv()),
            (g.SWAP(0, 1).controlled(2), qml.CSWAP(wires=[2, 0, 1])),
            (g.SWAP(0, 1).controlled(2).dagger(),
             qml.CSWAP(wires=[2, 0, 1]).inv()),
            (g.SWAP(0, 1).controlled(2).dagger().dagger(),
             qml.CSWAP(wires=[2, 0, 1]).inv().inv()),
            (g.ISWAP(0, 1), plf.ops.ISWAP(wires=[0, 1])),
            (g.ISWAP(0, 1).dagger(), plf.ops.ISWAP(wires=[0, 1]).inv()),
            (g.ISWAP(0, 1).dagger().dagger(),
             plf.ops.ISWAP(wires=[0, 1]).inv().inv()),
            (g.PSWAP(0.3, 0, 1), plf.ops.PSWAP(0.3, wires=[0, 1])),
            (g.PSWAP(0.3, 0, 1).dagger(), plf.ops.PSWAP(0.3, wires=[0, 1
                                                                    ]).inv()),
            (g.PSWAP(0.3, 0, 1).dagger().dagger(),
             plf.ops.PSWAP(0.3, wires=[0, 1]).inv().inv()),
            (g.CZ(0, 1), qml.CZ(wires=[0, 1])),
            (g.CZ(0, 1).dagger(), qml.CZ(wires=[0, 1]).inv()),
            (g.CZ(0, 1).dagger().dagger(), qml.CZ(wires=[0, 1]).inv().inv()),
            (g.PHASE(0.3, 0), qml.PhaseShift(0.3, wires=[0])),
            (g.PHASE(0.3, 0).dagger(), qml.PhaseShift(0.3, wires=[0]).inv()),
            (g.PHASE(0.3, 0).dagger().dagger(), qml.PhaseShift(
                0.3, wires=[0]).inv().inv()),
            (g.PHASE(0.3, 0).controlled(1), plf.ops.CPHASE(
                0.3, 3, wires=[1, 0])),
            (g.PHASE(0.3, 0).controlled(1).dagger(),
             plf.ops.CPHASE(0.3, 3, wires=[1, 0]).inv()),
            (
                g.PHASE(0.3, 0).controlled(1).dagger().dagger(),
                plf.ops.CPHASE(0.3, 3, wires=[1, 0]).inv().inv(),
            ),
            (g.RX(0.3, 0), qml.RX(0.3, wires=[0])),
            (g.RX(0.3, 0).dagger(), qml.RX(0.3, wires=[0]).inv()),
            (g.RX(0.3, 0).dagger().dagger(), qml.RX(0.3,
                                                    wires=[0]).inv().inv()),
            (g.RX(0.3, 0).controlled(1), qml.CRX(0.3, wires=[1, 0])),
            (g.RX(0.3, 0).controlled(1).dagger(), qml.CRX(0.3,
                                                          wires=[1, 0]).inv()),
            (g.RX(0.3, 0).controlled(1).dagger().dagger(),
             qml.CRX(0.3, wires=[1, 0]).inv().inv()),
            (g.RY(0.3, 0), qml.RY(0.3, wires=[0])),
            (g.RY(0.3, 0).dagger(), qml.RY(0.3, wires=[0]).inv()),
            (g.RY(0.3, 0).dagger().dagger(), qml.RY(0.3,
                                                    wires=[0]).inv().inv()),
            (g.RY(0.3, 0).controlled(1), qml.CRY(0.3, wires=[1, 0])),
            (g.RY(0.3, 0).controlled(1).dagger(), qml.CRY(0.3,
                                                          wires=[1, 0]).inv()),
            (g.RY(0.3, 0).controlled(1).dagger().dagger(),
             qml.CRY(0.3, wires=[1, 0]).inv().inv()),
            (g.RZ(0.3, 0), qml.RZ(0.3, wires=[0])),
            (g.RZ(0.3, 0).dagger(), qml.RZ(0.3, wires=[0]).inv()),
            (g.RZ(0.3, 0).dagger().dagger(), qml.RZ(0.3,
                                                    wires=[0]).inv().inv()),
            (g.RZ(0.3, 0).controlled(1), qml.CRZ(0.3, wires=[1, 0])),
            (g.RZ(0.3, 0).controlled(1).dagger(), qml.CRZ(0.3,
                                                          wires=[1, 0]).inv()),
            (g.RZ(0.3, 0).controlled(1).dagger().dagger(),
             qml.CRZ(0.3, wires=[1, 0]).inv().inv()),
            (g.CPHASE(0.3, 0, 1), plf.ops.CPHASE(0.3, 3, wires=[0, 1])),
            (g.CPHASE(0.3, 0, 1).dagger(), plf.ops.CPHASE(0.3, 3,
                                                          wires=[0, 1]).inv()),
            (
                g.CPHASE(0.3, 0, 1).dagger().dagger(),
                plf.ops.CPHASE(0.3, 3, wires=[0, 1]).inv().inv(),
            ),
            (g.CPHASE00(0.3, 0, 1), plf.ops.CPHASE(0.3, 0, wires=[0, 1])),
            (g.CPHASE00(0.3, 0, 1).dagger(),
             plf.ops.CPHASE(0.3, 0, wires=[0, 1]).inv()),
            (
                g.CPHASE00(0.3, 0, 1).dagger().dagger(),
                plf.ops.CPHASE(0.3, 0, wires=[0, 1]).inv().inv(),
            ),
            (g.CPHASE01(0.3, 0, 1), plf.ops.CPHASE(0.3, 1, wires=[0, 1])),
            (g.CPHASE01(0.3, 0, 1).dagger(),
             plf.ops.CPHASE(0.3, 1, wires=[0, 1]).inv()),
            (
                g.CPHASE01(0.3, 0, 1).dagger().dagger(),
                plf.ops.CPHASE(0.3, 1, wires=[0, 1]).inv().inv(),
            ),
            (g.CPHASE10(0.3, 0, 1), plf.ops.CPHASE(0.3, 2, wires=[0, 1])),
            (g.CPHASE10(0.3, 0, 1).dagger(),
             plf.ops.CPHASE(0.3, 2, wires=[0, 1]).inv()),
            (
                g.CPHASE10(0.3, 0, 1).dagger().dagger(),
                plf.ops.CPHASE(0.3, 2, wires=[0, 1]).inv().inv(),
            ),
            (g.CSWAP(0, 1, 2), qml.CSWAP(wires=[0, 1, 2])),
            (g.CSWAP(0, 1, 2).dagger(), qml.CSWAP(wires=[0, 1, 2]).inv()),
            (g.CSWAP(0, 1, 2).dagger().dagger(),
             qml.CSWAP(wires=[0, 1, 2]).inv().inv()),
            (g.CCNOT(0, 1, 2), plf.ops.CCNOT(wires=[0, 1, 2])),
            (g.CCNOT(0, 1, 2).dagger(), plf.ops.CCNOT(wires=[0, 1, 2]).inv()),
            (g.CCNOT(0, 1, 2).dagger().dagger(),
             plf.ops.CCNOT(wires=[0, 1, 2]).inv().inv()),
        ],
    )
    def test_convert_operation(self, pyquil_operation, expected_pl_operation):
        """Test that single pyquil gates are properly converted."""
        program = pyquil.Program()

        program += pyquil_operation

        with OperationRecorder() as rec:
            loader = load_program(program)
            loader(wires=range(len(loader.defined_qubits)))

        assert rec.queue[0].name == expected_pl_operation.name
        assert rec.queue[0].wires == expected_pl_operation.wires
        assert rec.queue[0].params == expected_pl_operation.params

    def test_convert_simple_program(self):
        """Test that a simple program is properly converted."""
        program = pyquil.Program()

        program += g.H(0)
        program += g.RZ(0.34, 1)
        program += g.CNOT(0, 3)
        program += g.H(2)
        program += g.H(7)
        program += g.X(7)
        program += g.Y(1)
        program += g.RZ(0.34, 1)

        with OperationRecorder() as rec:
            load_program(program)(wires=range(5))

        # The wires should be assigned as
        # 0  1  2  3  7
        # 0  1  2  3  4

        expected_queue = [
            qml.Hadamard(0),
            qml.RZ(0.34, wires=[1]),
            qml.CNOT(wires=[0, 3]),
            qml.Hadamard(2),
            qml.Hadamard(4),
            qml.PauliX(4),
            qml.PauliY(1),
            qml.RZ(0.34, wires=[1]),
        ]

        for converted, expected in zip(rec.queue, expected_queue):
            assert converted.name == expected.name
            assert converted.wires == expected.wires
            assert converted.params == expected.params

    def test_convert_simple_program_with_parameters(self):
        """Test that a simple program with parameters is properly converted."""
        program = pyquil.Program()

        alpha = program.declare("alpha", "REAL")
        beta = program.declare("beta", "REAL")
        gamma = program.declare("gamma", "REAL")

        program += g.H(0)
        program += g.CNOT(0, 1)
        program += g.RX(alpha, 1)
        program += g.RZ(beta, 1)
        program += g.RX(gamma, 1)
        program += g.CNOT(0, 1)
        program += g.H(0)

        a, b, c = 0.1, 0.2, 0.3

        parameter_map = {"alpha": a, "beta": b, "gamma": c}

        with OperationRecorder() as rec:
            load_program(program)(wires=range(2), parameter_map=parameter_map)

        expected_queue = [
            qml.Hadamard(0),
            qml.CNOT(wires=[0, 1]),
            qml.RX(0.1, wires=[1]),
            qml.RZ(0.2, wires=[1]),
            qml.RX(0.3, wires=[1]),
            qml.CNOT(wires=[0, 1]),
            qml.Hadamard(0),
        ]

        for converted, expected in zip(rec.queue, expected_queue):
            assert converted.name == expected.name
            assert converted.wires == expected.wires
            assert converted.params == expected.params

    def test_parameter_not_given_error(self):
        """Test that the correct error is raised if a parameter is not given."""
        program = pyquil.Program()

        alpha = program.declare("alpha", "REAL")
        beta = program.declare("beta", "REAL")

        program += g.H(0)
        program += g.CNOT(0, 1)
        program += g.RX(alpha, 1)
        program += g.RZ(beta, 1)

        a = 0.1

        parameter_map = {"alpha": a}

        with pytest.raises(
                qml.DeviceError,
                match=
                "The PyQuil program defines a variable .* that is not present in the given variable map",
        ):
            load_program(program)(wires=range(2), parameter_map=parameter_map)

    def test_convert_simple_program_with_parameters_mixed_keys(self):
        """Test that a parametrized program is properly converted when
        the variable map contains mixed key types."""
        program = pyquil.Program()

        alpha = program.declare("alpha", "REAL")
        beta = program.declare("beta", "REAL")
        gamma = program.declare("gamma", "REAL")
        delta = program.declare("delta", "REAL")

        program += g.H(0)
        program += g.CNOT(0, 1)
        program += g.RX(alpha, 1)
        program += g.RZ(beta, 1)
        program += g.RX(gamma, 1)
        program += g.CNOT(0, 1)
        program += g.RZ(delta, 0)
        program += g.H(0)

        a, b, c, d = 0.1, 0.2, 0.3, 0.4

        parameter_map = {"alpha": a, beta: b, gamma: c, "delta": d}

        with OperationRecorder() as rec:
            load_program(program)(wires=range(2), parameter_map=parameter_map)

        expected_queue = [
            qml.Hadamard(0),
            qml.CNOT(wires=[0, 1]),
            qml.RX(0.1, wires=[1]),
            qml.RZ(0.2, wires=[1]),
            qml.RX(0.3, wires=[1]),
            qml.CNOT(wires=[0, 1]),
            qml.RZ(0.4, wires=[0]),
            qml.Hadamard(0),
        ]

        for converted, expected in zip(rec.queue, expected_queue):
            assert converted.name == expected.name
            assert converted.wires == expected.wires
            assert converted.params == expected.params

    def test_convert_simple_program_wire_assignment(self):
        """Test that the assignment of qubits to wires works as expected."""
        program = pyquil.Program()

        program += g.H(0)
        program += g.RZ(0.34, 1)
        program += g.CNOT(0, 3)
        program += g.H(2)
        program += g.H(7)
        program += g.X(7)
        program += g.Y(1)
        program += g.RZ(0.34, 1)

        with OperationRecorder() as rec:
            load_program(program)(wires=[3, 6, 4, 9, 1])

        # The wires should be assigned as
        # 0  1  2  3  7
        # 3  6  4  9  1

        expected_queue = [
            qml.Hadamard(3),
            qml.RZ(0.34, wires=[6]),
            qml.CNOT(wires=[3, 9]),
            qml.Hadamard(4),
            qml.Hadamard(1),
            qml.PauliX(1),
            qml.PauliY(6),
            qml.RZ(0.34, wires=[6]),
        ]

        for converted, expected in zip(rec.queue, expected_queue):
            assert converted.name == expected.name
            assert converted.wires == expected.wires
            assert converted.params == expected.params

    @pytest.mark.parametrize("wires", [[0, 1, 2, 3], [4, 5]])
    def test_convert_wire_error(self, wires):
        """Test that the conversion raises an error if the given number 
        of wires doesn't match the number of qubits in the Program."""
        program = pyquil.Program()

        program += g.H(0)
        program += g.H(1)
        program += g.H(2)

        with pytest.raises(
                qml.DeviceError,
                match=
                "The number of given wires does not match the number of qubits in the PyQuil Program",
        ):
            load_program(program)(wires=wires)

    def test_convert_program_with_inverses(self):
        """Test that a program with inverses is properly converted."""
        program = pyquil.Program()

        program += g.H(0)
        program += g.RZ(0.34, 1).dagger()
        program += g.CNOT(0, 3).dagger()
        program += g.H(2)
        program += g.H(7).dagger().dagger()
        program += g.X(7).dagger()
        program += g.X(7)
        program += g.Y(1)
        program += g.RZ(0.34, 1)

        with OperationRecorder() as rec:
            load_program(program)(wires=range(5))

        expected_queue = [
            qml.Hadamard(0),
            qml.RZ(0.34, wires=[1]).inv(),
            qml.CNOT(wires=[0, 3]).inv(),
            qml.Hadamard(2),
            qml.Hadamard(4),
            qml.PauliX(4).inv(),
            qml.PauliX(4),
            qml.PauliY(1),
            qml.RZ(0.34, wires=[1]),
        ]

        for converted, expected in zip(rec.queue, expected_queue):
            assert converted.name == expected.name
            assert converted.wires == expected.wires
            assert converted.params == expected.params

    def test_convert_program_with_controlled_operations(self):
        """Test that a program with controlled operations is properly converted."""
        program = pyquil.Program()

        program += g.RZ(0.34, 1)
        program += g.RY(0.2, 3).controlled(2)
        program += g.RX(0.4, 2).controlled(0)
        program += g.CNOT(1, 4)
        program += g.CNOT(1, 6).controlled(3)
        program += g.X(3).controlled(4).controlled(1)

        with OperationRecorder() as rec:
            load_program(program)(wires=range(6))

        expected_queue = [
            qml.RZ(0.34, wires=[1]),
            qml.CRY(0.2, wires=[2, 3]),
            qml.CRX(0.4, wires=[0, 2]),
            qml.CNOT(wires=[1, 4]),
            plf.ops.CCNOT(wires=[3, 1, 5]),
            plf.ops.CCNOT(wires=[1, 4, 3]),
        ]

        for converted, expected in zip(rec.queue, expected_queue):
            assert converted.name == expected.name
            assert converted.wires == expected.wires
            assert converted.params == expected.params

    def test_convert_program_with_controlled_operations_not_in_pl_core(
            self, tol):
        """Test that a program with controlled operations out of scope of PL core/PLF 
        is properly converted, i.e. the operations are replaced with controlled operations."""
        program = pyquil.Program()

        CS_matrix = np.eye(4, dtype=complex)
        CS_matrix[3, 3] = 1j

        CCT_matrix = np.eye(8, dtype=complex)
        CCT_matrix[7, 7] = np.exp(1j * np.pi / 4)

        program += g.CNOT(0, 1)
        program += g.S(0).controlled(1)
        program += g.S(1).controlled(0)
        program += g.T(0).controlled(1).controlled(2)
        program += g.T(1).controlled(0).controlled(2)
        program += g.T(2).controlled(1).controlled(0)

        with OperationRecorder() as rec:
            load_program(program)(wires=range(3))

        expected_queue = [
            qml.CNOT(wires=[0, 1]),
            qml.QubitUnitary(CS_matrix, wires=[1, 0]),
            qml.QubitUnitary(CS_matrix, wires=[0, 1]),
            qml.QubitUnitary(CCT_matrix, wires=[2, 1, 0]),
            qml.QubitUnitary(CCT_matrix, wires=[2, 0, 1]),
            qml.QubitUnitary(CCT_matrix, wires=[0, 1, 2]),
        ]

        for converted, expected in zip(rec.queue, expected_queue):
            assert converted.name == expected.name
            assert converted.wires == expected.wires
            assert np.allclose(converted.params,
                               expected.params,
                               atol=tol,
                               rtol=0)

    def test_convert_program_with_controlled_dagger_operations(self):
        """Test that a program that combines controlled and daggered operations
        is properly converted."""
        program = pyquil.Program()

        program += g.CNOT(0, 1).controlled(2)
        program += g.CNOT(0, 1).dagger().controlled(2)
        program += g.CNOT(0, 1).controlled(2).dagger()
        program += g.CNOT(0, 1).dagger().controlled(2).dagger()
        program += g.RX(0.3, 3).controlled(4)
        program += g.RX(0.2, 3).controlled(4).dagger()
        program += g.RX(0.3, 3).dagger().controlled(4)
        program += g.RX(0.2, 3).dagger().controlled(4).dagger()
        program += g.X(2).dagger().controlled(4).controlled(1).dagger()
        program += g.X(0).dagger().controlled(4).controlled(1)
        program += g.X(0).dagger().controlled(4).dagger().dagger().controlled(
            1).dagger()

        with OperationRecorder() as rec:
            load_program(program)(wires=range(5))

        expected_queue = [
            plf.ops.CCNOT(wires=[2, 0, 1]),
            plf.ops.CCNOT(wires=[2, 0, 1]).inv(),
            plf.ops.CCNOT(wires=[2, 0, 1]).inv(),
            plf.ops.CCNOT(wires=[2, 0, 1]),
            qml.CRX(0.3, wires=[4, 3]),
            qml.CRX(0.2, wires=[4, 3]).inv(),
            qml.CRX(0.3, wires=[4, 3]).inv(),
            qml.CRX(0.2, wires=[4, 3]),
            plf.ops.CCNOT(wires=[1, 4, 2]),
            plf.ops.CCNOT(wires=[1, 4, 0]).inv(),
            plf.ops.CCNOT(wires=[1, 4, 0]),
        ]

        for converted, expected in zip(rec.queue, expected_queue):
            assert converted.name == expected.name
            assert converted.wires == expected.wires
            assert converted.params == expected.params

    def test_convert_program_with_defgates(self):
        """Test that a program that defines its own gates is properly converted."""
        program = pyquil.Program()

        sqrt_x = np.array([[0.5 + 0.5j, 0.5 - 0.5j], [0.5 - 0.5j, 0.5 + 0.5j]])

        sqrt_x_t2 = np.kron(sqrt_x, sqrt_x)
        sqrt_x_t3 = np.kron(sqrt_x, sqrt_x_t2)

        sqrt_x_definition = pyquil.quil.DefGate("SQRT-X", sqrt_x)
        SQRT_X = sqrt_x_definition.get_constructor()
        sqrt_x_t2_definition = pyquil.quil.DefGate("SQRT-X-T2", sqrt_x_t2)
        SQRT_X_T2 = sqrt_x_t2_definition.get_constructor()
        sqrt_x_t3_definition = pyquil.quil.DefGate("SQRT-X-T3", sqrt_x_t3)
        SQRT_X_T3 = sqrt_x_t3_definition.get_constructor()

        program += sqrt_x_definition
        program += sqrt_x_t2_definition
        program += sqrt_x_t3_definition

        program += g.CNOT(0, 1)
        program += SQRT_X(0)
        program += SQRT_X_T2(1, 2)
        program += SQRT_X_T3(1, 0, 2)
        program += g.CNOT(0, 1)
        program += g.CNOT(1, 2)
        program += g.CNOT(2, 0)

        with OperationRecorder() as rec:
            load_program(program)(wires=range(3))

        expected_queue = [
            qml.CNOT(wires=[0, 1]),
            qml.QubitUnitary(sqrt_x, wires=[0]),
            qml.QubitUnitary(sqrt_x_t2, wires=[1, 2]),
            qml.QubitUnitary(sqrt_x_t3, wires=[1, 0, 2]),
            qml.CNOT(wires=[0, 1]),
            qml.CNOT(wires=[1, 2]),
            qml.CNOT(wires=[2, 0]),
        ]

        for converted, expected in zip(rec.queue, expected_queue):
            assert converted.name == expected.name
            assert converted.wires == expected.wires
            assert converted.params == expected.params

    def test_convert_program_with_controlled_defgates(self, tol):
        """Test that a program with controlled defined gates is properly
        converted."""
        program = pyquil.Program()

        sqrt_x = np.array([[0.5 + 0.5j, 0.5 - 0.5j], [0.5 - 0.5j, 0.5 + 0.5j]])
        sqrt_x_t2 = np.kron(sqrt_x, sqrt_x)

        c_sqrt_x = np.eye(4, dtype=complex)
        c_sqrt_x[2:, 2:] = sqrt_x

        c_sqrt_x_t2 = np.eye(8, dtype=complex)
        c_sqrt_x_t2[4:, 4:] = sqrt_x_t2

        sqrt_x_definition = pyquil.quil.DefGate("SQRT-X", sqrt_x)
        SQRT_X = sqrt_x_definition.get_constructor()
        sqrt_x_t2_definition = pyquil.quil.DefGate("SQRT-X-T2", sqrt_x_t2)
        SQRT_X_T2 = sqrt_x_t2_definition.get_constructor()

        program += sqrt_x_definition
        program += sqrt_x_t2_definition

        program += g.CNOT(0, 1)
        program += SQRT_X(0).controlled(1)
        program += SQRT_X_T2(1, 2).controlled(0)
        program += g.X(0).controlled(1)
        program += g.RX(0.4, 0)

        with OperationRecorder() as rec:
            load_program(program)(wires=range(3))

        expected_queue = [
            qml.CNOT(wires=[0, 1]),
            qml.QubitUnitary(c_sqrt_x, wires=[1, 0]),
            qml.QubitUnitary(c_sqrt_x_t2, wires=[0, 1, 2]),
            qml.CNOT(wires=[1, 0]),
            qml.RX(0.4, wires=[0]),
        ]

        for converted, expected in zip(rec.queue, expected_queue):
            assert converted.name == expected.name
            assert converted.wires == expected.wires
            assert np.allclose(converted.params,
                               expected.params,
                               atol=tol,
                               rtol=0)

    def test_convert_program_with_defpermutationgates(self):
        """Test that a program with gates defined via DefPermutationGate is 
        properly converted."""
        program = pyquil.Program()

        expected_matrix = np.eye(4)
        expected_matrix = expected_matrix[:, [1, 0, 3, 2]]

        x_plus_x_definition = pyquil.quil.DefPermutationGate(
            "X+X", [1, 0, 3, 2])
        X_plus_X = x_plus_x_definition.get_constructor()

        program += x_plus_x_definition

        program += g.CNOT(0, 1)
        program += X_plus_X(0, 1)
        program += g.CNOT(0, 1)

        with OperationRecorder() as rec:
            load_program(program)(wires=range(2))

        expected_queue = [
            qml.CNOT(wires=[0, 1]),
            qml.QubitUnitary(expected_matrix, wires=[0, 1]),
            qml.CNOT(wires=[0, 1]),
        ]

        for converted, expected in zip(rec.queue, expected_queue):
            assert converted.name == expected.name
            assert converted.wires == expected.wires
            assert np.array_equal(converted.params, expected.params)

    def test_convert_program_with_controlled_defpermutationgates(self):
        """Test that a program that uses controlled permutation gates 
        is properly converted."""
        program = pyquil.Program()

        expected_matrix = np.eye(4)
        expected_matrix = expected_matrix[:, [1, 0, 3, 2]]

        expected_controlled_matrix = np.eye(8)
        expected_controlled_matrix[4:, 4:] = expected_matrix

        x_plus_x_definition = pyquil.quil.DefPermutationGate(
            "X+X", [1, 0, 3, 2])
        X_plus_X = x_plus_x_definition.get_constructor()

        program += x_plus_x_definition

        program += g.CNOT(0, 1)
        program += X_plus_X(0, 1).controlled(2)
        program += X_plus_X(1, 2).controlled(0)
        program += g.CNOT(0, 1)

        with OperationRecorder() as rec:
            load_program(program)(wires=range(3))

        expected_queue = [
            qml.CNOT(wires=[0, 1]),
            qml.QubitUnitary(expected_controlled_matrix, wires=[2, 0, 1]),
            qml.QubitUnitary(expected_controlled_matrix, wires=[0, 1, 2]),
            qml.CNOT(wires=[0, 1]),
        ]

        for converted, expected in zip(rec.queue, expected_queue):
            assert converted.name == expected.name
            assert converted.wires == expected.wires
            assert np.array_equal(converted.params, expected.params)

    def test_forked_gate_error(self):
        """Test that an error is raised if conversion of a 
        forked gate is attempted."""
        program = pyquil.Program()

        program += g.CNOT(0, 1)
        program += g.RX(0.3, 1).forked(2, [0.5])
        program += g.CNOT(0, 1)

        with pytest.raises(
                qml.DeviceError,
                match=
                "Forked gates can not be imported into PennyLane, as this functionality is not supported",
        ):
            load_program(program)(wires=range(3))
コード例 #25
0
class TestRepresentationResolver:
    """Test the RepresentationResolver class."""
    @pytest.mark.parametrize(
        "list,element,index,list_after",
        [
            ([1, 2, 3], 2, 1, [1, 2, 3]),
            ([1, 2, 2, 3], 2, 1, [1, 2, 2, 3]),
            ([1, 2, 3], 4, 3, [1, 2, 3, 4]),
        ],
    )
    def test_index_of_array_or_append(self, list, element, index, list_after):
        """Test the method index_of_array_or_append."""

        assert RepresentationResolver.index_of_array_or_append(element,
                                                               list) == index
        assert list == list_after

    @pytest.mark.parametrize(
        "par,expected",
        [
            (3, "3"),
            (5.236422, "5.24"),
        ],
    )
    def test_single_parameter_representation(self,
                                             unicode_representation_resolver,
                                             par, expected):
        """Test that single parameters are properly resolved."""
        assert unicode_representation_resolver.single_parameter_representation(
            par) == expected

    @pytest.mark.parametrize(
        "op,wire,target",
        [
            (qml.PauliX(wires=[1]), 1, "X"),
            (qml.CNOT(wires=[0, 1]), 1, "X"),
            (qml.CNOT(wires=[0, 1]), 0, "C"),
            (qml.Toffoli(wires=[0, 2, 1]), 1, "X"),
            (qml.Toffoli(wires=[0, 2, 1]), 0, "C"),
            (qml.Toffoli(wires=[0, 2, 1]), 2, "C"),
            (qml.CSWAP(wires=[0, 2, 1]), 1, "SWAP"),
            (qml.CSWAP(wires=[0, 2, 1]), 2, "SWAP"),
            (qml.CSWAP(wires=[0, 2, 1]), 0, "C"),
            (qml.PauliY(wires=[1]), 1, "Y"),
            (qml.PauliZ(wires=[1]), 1, "Z"),
            (qml.CZ(wires=[0, 1]), 1, "Z"),
            (qml.CZ(wires=[0, 1]), 0, "C"),
            (qml.Identity(wires=[1]), 1, "I"),
            (qml.Hadamard(wires=[1]), 1, "H"),
            (qml.PauliRot(3.14, "XX", wires=[0, 1]), 1, "RX(3.14)"),
            (qml.PauliRot(3.14, "YZ", wires=[0, 1]), 1, "RZ(3.14)"),
            (qml.PauliRot(3.14, "IXYZI", wires=[0, 1, 2, 3, 4
                                                ]), 0, "RI(3.14)"),
            (qml.PauliRot(3.14, "IXYZI", wires=[0, 1, 2, 3, 4
                                                ]), 1, "RX(3.14)"),
            (qml.PauliRot(3.14, "IXYZI", wires=[0, 1, 2, 3, 4
                                                ]), 2, "RY(3.14)"),
            (qml.PauliRot(3.14, "IXYZI", wires=[0, 1, 2, 3, 4
                                                ]), 3, "RZ(3.14)"),
            (qml.PauliRot(3.14, "IXYZI", wires=[0, 1, 2, 3, 4
                                                ]), 4, "RI(3.14)"),
            (qml.MultiRZ(3.14, wires=[0, 1]), 0, "RZ(3.14)"),
            (qml.MultiRZ(3.14, wires=[0, 1]), 1, "RZ(3.14)"),
            (qml.CRX(3.14, wires=[0, 1]), 1, "RX(3.14)"),
            (qml.CRX(3.14, wires=[0, 1]), 0, "C"),
            (qml.CRY(3.14, wires=[0, 1]), 1, "RY(3.14)"),
            (qml.CRY(3.14, wires=[0, 1]), 0, "C"),
            (qml.CRZ(3.14, wires=[0, 1]), 1, "RZ(3.14)"),
            (qml.CRZ(3.14, wires=[0, 1]), 0, "C"),
            (qml.CRot(3.14, 2.14, 1.14, wires=[0, 1
                                               ]), 1, "Rot(3.14, 2.14, 1.14)"),
            (qml.CRot(3.14, 2.14, 1.14, wires=[0, 1]), 0, "C"),
            (qml.PhaseShift(3.14, wires=[0]), 0, "Rϕ(3.14)"),
            (qml.Beamsplitter(1, 2, wires=[0, 1]), 1, "BS(1, 2)"),
            (qml.Beamsplitter(1, 2, wires=[0, 1]), 0, "BS(1, 2)"),
            (qml.Squeezing(1, 2, wires=[1]), 1, "S(1, 2)"),
            (qml.TwoModeSqueezing(1, 2, wires=[0, 1]), 1, "S(1, 2)"),
            (qml.TwoModeSqueezing(1, 2, wires=[0, 1]), 0, "S(1, 2)"),
            (qml.Displacement(1, 2, wires=[1]), 1, "D(1, 2)"),
            (qml.NumberOperator(wires=[1]), 1, "n"),
            (qml.Rotation(3.14, wires=[1]), 1, "R(3.14)"),
            (qml.ControlledAddition(3.14, wires=[0, 1]), 1, "X(3.14)"),
            (qml.ControlledAddition(3.14, wires=[0, 1]), 0, "C"),
            (qml.ControlledPhase(3.14, wires=[0, 1]), 1, "Z(3.14)"),
            (qml.ControlledPhase(3.14, wires=[0, 1]), 0, "C"),
            (qml.ThermalState(3, wires=[1]), 1, "Thermal(3)"),
            (
                qml.GaussianState(np.array([[2, 0], [0, 2]]),
                                  np.array([1, 2]),
                                  wires=[1]),
                1,
                "Gaussian(M0,M1)",
            ),
            (qml.QuadraticPhase(3.14, wires=[1]), 1, "P(3.14)"),
            (qml.RX(3.14, wires=[1]), 1, "RX(3.14)"),
            (qml.S(wires=[2]), 2, "S"),
            (qml.T(wires=[2]), 2, "T"),
            (qml.RX(3.14, wires=[1]), 1, "RX(3.14)"),
            (qml.RY(3.14, wires=[1]), 1, "RY(3.14)"),
            (qml.RZ(3.14, wires=[1]), 1, "RZ(3.14)"),
            (qml.Rot(3.14, 2.14, 1.14, wires=[1]), 1, "Rot(3.14, 2.14, 1.14)"),
            (qml.U1(3.14, wires=[1]), 1, "U1(3.14)"),
            (qml.U2(3.14, 2.14, wires=[1]), 1, "U2(3.14, 2.14)"),
            (qml.U3(3.14, 2.14, 1.14, wires=[1]), 1, "U3(3.14, 2.14, 1.14)"),
            (qml.BasisState(np.array([0, 1, 0]), wires=[1, 2, 3]), 1, "|0⟩"),
            (qml.BasisState(np.array([0, 1, 0]), wires=[1, 2, 3]), 2, "|1⟩"),
            (qml.BasisState(np.array([0, 1, 0]), wires=[1, 2, 3]), 3, "|0⟩"),
            (qml.QubitStateVector(np.array([0, 1, 0, 0]),
                                  wires=[1, 2]), 1, "QubitStateVector(M0)"),
            (qml.QubitStateVector(np.array([0, 1, 0, 0]),
                                  wires=[1, 2]), 2, "QubitStateVector(M0)"),
            (qml.QubitUnitary(np.eye(2), wires=[1]), 1, "U0"),
            (qml.QubitUnitary(np.eye(4), wires=[1, 2]), 2, "U0"),
            (qml.Kerr(3.14, wires=[1]), 1, "Kerr(3.14)"),
            (qml.CrossKerr(3.14, wires=[1, 2]), 1, "CrossKerr(3.14)"),
            (qml.CrossKerr(3.14, wires=[1, 2]), 2, "CrossKerr(3.14)"),
            (qml.CubicPhase(3.14, wires=[1]), 1, "V(3.14)"),
            (qml.InterferometerUnitary(
                np.eye(4), wires=[1, 3]), 1, "InterferometerUnitary(M0)"),
            (qml.InterferometerUnitary(
                np.eye(4), wires=[1, 3]), 3, "InterferometerUnitary(M0)"),
            (qml.CatState(3.14, 2.14, 1,
                          wires=[1]), 1, "CatState(3.14, 2.14, 1)"),
            (qml.CoherentState(3.14, 2.14,
                               wires=[1]), 1, "CoherentState(3.14, 2.14)"),
            (
                qml.FockDensityMatrix(np.kron(np.eye(4), np.eye(4)),
                                      wires=[1, 2]),
                1,
                "FockDensityMatrix(M0)",
            ),
            (
                qml.FockDensityMatrix(np.kron(np.eye(4), np.eye(4)),
                                      wires=[1, 2]),
                2,
                "FockDensityMatrix(M0)",
            ),
            (
                qml.DisplacedSqueezedState(3.14, 2.14, 1.14, 0.14, wires=[1]),
                1,
                "DisplacedSqueezedState(3.14, 2.14, 1.14, 0.14)",
            ),
            (qml.FockState(7, wires=[1]), 1, "|7⟩"),
            (qml.FockStateVector(np.array([4, 5, 7]), wires=[1, 2, 3
                                                             ]), 1, "|4⟩"),
            (qml.FockStateVector(np.array([4, 5, 7]), wires=[1, 2, 3
                                                             ]), 2, "|5⟩"),
            (qml.FockStateVector(np.array([4, 5, 7]), wires=[1, 2, 3
                                                             ]), 3, "|7⟩"),
            (qml.SqueezedState(3.14, 2.14,
                               wires=[1]), 1, "SqueezedState(3.14, 2.14)"),
            (qml.Hermitian(np.eye(4), wires=[1, 2]), 1, "H0"),
            (qml.Hermitian(np.eye(4), wires=[1, 2]), 2, "H0"),
            (qml.X(wires=[1]), 1, "x"),
            (qml.P(wires=[1]), 1, "p"),
            (qml.FockStateProjector(np.array([4, 5, 7]),
                                    wires=[1, 2, 3]), 1, "|4,5,7╳4,5,7|"),
            (
                qml.PolyXP(np.array([1, 2, 0, -1.3, 6]), wires=[1]),
                2,
                "1+2x₀-1.3x₁+6p₁",
            ),
            (
                qml.PolyXP(np.array([[1.2, 2.3, 4.5], [-1.2, 1.2, -1.5],
                                     [-1.3, 4.5, 2.3]]),
                           wires=[1]),
                1,
                "1.2+1.1x₀+3.2p₀+1.2x₀²+2.3p₀²+3x₀p₀",
            ),
            (
                qml.PolyXP(
                    np.array([
                        [1.2, 2.3, 4.5, 0, 0],
                        [-1.2, 1.2, -1.5, 0, 0],
                        [-1.3, 4.5, 2.3, 0, 0],
                        [0, 2.6, 0, 0, 0],
                        [0, 0, 0, -4.7, -1.0],
                    ]),
                    wires=[1],
                ),
                1,
                "1.2+1.1x₀+3.2p₀+1.2x₀²+2.3p₀²+3x₀p₀+2.6x₀x₁-p₁²-4.7x₁p₁",
            ),
            (qml.QuadOperator(3.14, wires=[1]), 1, "cos(3.14)x+sin(3.14)p"),
            (qml.PauliX(wires=[1]).inv(), 1, "X⁻¹"),
            (qml.CNOT(wires=[0, 1]).inv(), 1, "X⁻¹"),
            (qml.CNOT(wires=[0, 1]).inv(), 0, "C"),
            (qml.Toffoli(wires=[0, 2, 1]).inv(), 1, "X⁻¹"),
            (qml.Toffoli(wires=[0, 2, 1]).inv(), 0, "C"),
            (qml.Toffoli(wires=[0, 2, 1]).inv(), 2, "C"),
            (qml.measure.sample(wires=[0, 1]), 0,
             "basis"),  # not providing an observable in
            (qml.measure.sample(wires=[0, 1]), 1,
             "basis"),  # sample gets displayed as raw
            (two_wire_quantum_tape(), 0, "QuantumTape:T0"),
            (two_wire_quantum_tape(), 1, "QuantumTape:T0"),
        ],
    )
    def test_operator_representation_unicode(self,
                                             unicode_representation_resolver,
                                             op, wire, target):
        """Test that an Operator instance is properly resolved."""
        assert unicode_representation_resolver.operator_representation(
            op, wire) == target

    @pytest.mark.parametrize(
        "op,wire,target",
        [
            (qml.PauliX(wires=[1]), 1, "X"),
            (qml.CNOT(wires=[0, 1]), 1, "X"),
            (qml.CNOT(wires=[0, 1]), 0, "C"),
            (qml.Toffoli(wires=[0, 2, 1]), 1, "X"),
            (qml.Toffoli(wires=[0, 2, 1]), 0, "C"),
            (qml.Toffoli(wires=[0, 2, 1]), 2, "C"),
            (qml.CSWAP(wires=[0, 2, 1]), 1, "SWAP"),
            (qml.CSWAP(wires=[0, 2, 1]), 2, "SWAP"),
            (qml.CSWAP(wires=[0, 2, 1]), 0, "C"),
            (qml.PauliY(wires=[1]), 1, "Y"),
            (qml.PauliZ(wires=[1]), 1, "Z"),
            (qml.CZ(wires=[0, 1]), 1, "Z"),
            (qml.CZ(wires=[0, 1]), 0, "C"),
            (qml.Identity(wires=[1]), 1, "I"),
            (qml.Hadamard(wires=[1]), 1, "H"),
            (qml.CRX(3.14, wires=[0, 1]), 1, "RX(3.14)"),
            (qml.CRX(3.14, wires=[0, 1]), 0, "C"),
            (qml.CRY(3.14, wires=[0, 1]), 1, "RY(3.14)"),
            (qml.CRY(3.14, wires=[0, 1]), 0, "C"),
            (qml.CRZ(3.14, wires=[0, 1]), 1, "RZ(3.14)"),
            (qml.CRZ(3.14, wires=[0, 1]), 0, "C"),
            (qml.CRot(3.14, 2.14, 1.14, wires=[0, 1
                                               ]), 1, "Rot(3.14, 2.14, 1.14)"),
            (qml.CRot(3.14, 2.14, 1.14, wires=[0, 1]), 0, "C"),
            (qml.PhaseShift(3.14, wires=[0]), 0, "Rϕ(3.14)"),
            (qml.Beamsplitter(1, 2, wires=[0, 1]), 1, "BS(1, 2)"),
            (qml.Beamsplitter(1, 2, wires=[0, 1]), 0, "BS(1, 2)"),
            (qml.Squeezing(1, 2, wires=[1]), 1, "S(1, 2)"),
            (qml.TwoModeSqueezing(1, 2, wires=[0, 1]), 1, "S(1, 2)"),
            (qml.TwoModeSqueezing(1, 2, wires=[0, 1]), 0, "S(1, 2)"),
            (qml.Displacement(1, 2, wires=[1]), 1, "D(1, 2)"),
            (qml.NumberOperator(wires=[1]), 1, "n"),
            (qml.Rotation(3.14, wires=[1]), 1, "R(3.14)"),
            (qml.ControlledAddition(3.14, wires=[0, 1]), 1, "X(3.14)"),
            (qml.ControlledAddition(3.14, wires=[0, 1]), 0, "C"),
            (qml.ControlledPhase(3.14, wires=[0, 1]), 1, "Z(3.14)"),
            (qml.ControlledPhase(3.14, wires=[0, 1]), 0, "C"),
            (qml.ThermalState(3, wires=[1]), 1, "Thermal(3)"),
            (
                qml.GaussianState(np.array([[2, 0], [0, 2]]),
                                  np.array([1, 2]),
                                  wires=[1]),
                1,
                "Gaussian(M0,M1)",
            ),
            (qml.QuadraticPhase(3.14, wires=[1]), 1, "P(3.14)"),
            (qml.RX(3.14, wires=[1]), 1, "RX(3.14)"),
            (qml.S(wires=[2]), 2, "S"),
            (qml.T(wires=[2]), 2, "T"),
            (qml.RX(3.14, wires=[1]), 1, "RX(3.14)"),
            (qml.RY(3.14, wires=[1]), 1, "RY(3.14)"),
            (qml.RZ(3.14, wires=[1]), 1, "RZ(3.14)"),
            (qml.Rot(3.14, 2.14, 1.14, wires=[1]), 1, "Rot(3.14, 2.14, 1.14)"),
            (qml.U1(3.14, wires=[1]), 1, "U1(3.14)"),
            (qml.U2(3.14, 2.14, wires=[1]), 1, "U2(3.14, 2.14)"),
            (qml.U3(3.14, 2.14, 1.14, wires=[1]), 1, "U3(3.14, 2.14, 1.14)"),
            (qml.BasisState(np.array([0, 1, 0]), wires=[1, 2, 3]), 1, "|0>"),
            (qml.BasisState(np.array([0, 1, 0]), wires=[1, 2, 3]), 2, "|1>"),
            (qml.BasisState(np.array([0, 1, 0]), wires=[1, 2, 3]), 3, "|0>"),
            (qml.QubitStateVector(np.array([0, 1, 0, 0]),
                                  wires=[1, 2]), 1, "QubitStateVector(M0)"),
            (qml.QubitStateVector(np.array([0, 1, 0, 0]),
                                  wires=[1, 2]), 2, "QubitStateVector(M0)"),
            (qml.QubitUnitary(np.eye(2), wires=[1]), 1, "U0"),
            (qml.QubitUnitary(np.eye(4), wires=[1, 2]), 2, "U0"),
            (qml.Kerr(3.14, wires=[1]), 1, "Kerr(3.14)"),
            (qml.CrossKerr(3.14, wires=[1, 2]), 1, "CrossKerr(3.14)"),
            (qml.CrossKerr(3.14, wires=[1, 2]), 2, "CrossKerr(3.14)"),
            (qml.CubicPhase(3.14, wires=[1]), 1, "V(3.14)"),
            (qml.InterferometerUnitary(
                np.eye(4), wires=[1, 3]), 1, "InterferometerUnitary(M0)"),
            (qml.InterferometerUnitary(
                np.eye(4), wires=[1, 3]), 3, "InterferometerUnitary(M0)"),
            (qml.CatState(3.14, 2.14, 1,
                          wires=[1]), 1, "CatState(3.14, 2.14, 1)"),
            (qml.CoherentState(3.14, 2.14,
                               wires=[1]), 1, "CoherentState(3.14, 2.14)"),
            (
                qml.FockDensityMatrix(np.kron(np.eye(4), np.eye(4)),
                                      wires=[1, 2]),
                1,
                "FockDensityMatrix(M0)",
            ),
            (
                qml.FockDensityMatrix(np.kron(np.eye(4), np.eye(4)),
                                      wires=[1, 2]),
                2,
                "FockDensityMatrix(M0)",
            ),
            (
                qml.DisplacedSqueezedState(3.14, 2.14, 1.14, 0.14, wires=[1]),
                1,
                "DisplacedSqueezedState(3.14, 2.14, 1.14, 0.14)",
            ),
            (qml.FockState(7, wires=[1]), 1, "|7>"),
            (qml.FockStateVector(np.array([4, 5, 7]), wires=[1, 2, 3
                                                             ]), 1, "|4>"),
            (qml.FockStateVector(np.array([4, 5, 7]), wires=[1, 2, 3
                                                             ]), 2, "|5>"),
            (qml.FockStateVector(np.array([4, 5, 7]), wires=[1, 2, 3
                                                             ]), 3, "|7>"),
            (qml.SqueezedState(3.14, 2.14,
                               wires=[1]), 1, "SqueezedState(3.14, 2.14)"),
            (qml.Hermitian(np.eye(4), wires=[1, 2]), 1, "H0"),
            (qml.Hermitian(np.eye(4), wires=[1, 2]), 2, "H0"),
            (qml.X(wires=[1]), 1, "x"),
            (qml.P(wires=[1]), 1, "p"),
            (qml.FockStateProjector(np.array([4, 5, 7]),
                                    wires=[1, 2, 3]), 1, "|4,5,7X4,5,7|"),
            (
                qml.PolyXP(np.array([1, 2, 0, -1.3, 6]), wires=[1]),
                2,
                "1+2x_0-1.3x_1+6p_1",
            ),
            (
                qml.PolyXP(np.array([[1.2, 2.3, 4.5], [-1.2, 1.2, -1.5],
                                     [-1.3, 4.5, 2.3]]),
                           wires=[1]),
                1,
                "1.2+1.1x_0+3.2p_0+1.2x_0^2+2.3p_0^2+3x_0p_0",
            ),
            (
                qml.PolyXP(
                    np.array([
                        [1.2, 2.3, 4.5, 0, 0],
                        [-1.2, 1.2, -1.5, 0, 0],
                        [-1.3, 4.5, 2.3, 0, 0],
                        [0, 2.6, 0, 0, 0],
                        [0, 0, 0, -4.7, 0],
                    ]),
                    wires=[1],
                ),
                1,
                "1.2+1.1x_0+3.2p_0+1.2x_0^2+2.3p_0^2+3x_0p_0+2.6x_0x_1-4.7x_1p_1",
            ),
            (qml.QuadOperator(3.14, wires=[1]), 1, "cos(3.14)x+sin(3.14)p"),
            (qml.QuadOperator(3.14, wires=[1]), 1, "cos(3.14)x+sin(3.14)p"),
            (qml.PauliX(wires=[1]).inv(), 1, "X^-1"),
            (qml.CNOT(wires=[0, 1]).inv(), 1, "X^-1"),
            (qml.CNOT(wires=[0, 1]).inv(), 0, "C"),
            (qml.Toffoli(wires=[0, 2, 1]).inv(), 1, "X^-1"),
            (qml.Toffoli(wires=[0, 2, 1]).inv(), 0, "C"),
            (qml.Toffoli(wires=[0, 2, 1]).inv(), 2, "C"),
            (qml.measure.sample(wires=[0, 1]), 0,
             "basis"),  # not providing an observable in
            (qml.measure.sample(wires=[0, 1]), 1,
             "basis"),  # sample gets displayed as raw
            (two_wire_quantum_tape(), 0, "QuantumTape:T0"),
            (two_wire_quantum_tape(), 1, "QuantumTape:T0"),
        ],
    )
    def test_operator_representation_ascii(self, ascii_representation_resolver,
                                           op, wire, target):
        """Test that an Operator instance is properly resolved."""
        assert ascii_representation_resolver.operator_representation(
            op, wire) == target

    @pytest.mark.parametrize(
        "obs,wire,target",
        [
            (qml.expval(qml.PauliX(wires=[1])), 1, "⟨X⟩"),
            (qml.expval(qml.PauliY(wires=[1])), 1, "⟨Y⟩"),
            (qml.expval(qml.PauliZ(wires=[1])), 1, "⟨Z⟩"),
            (qml.expval(qml.Hadamard(wires=[1])), 1, "⟨H⟩"),
            (qml.expval(qml.Hermitian(np.eye(4), wires=[1, 2])), 1, "⟨H0⟩"),
            (qml.expval(qml.Hermitian(np.eye(4), wires=[1, 2])), 2, "⟨H0⟩"),
            (qml.expval(qml.NumberOperator(wires=[1])), 1, "⟨n⟩"),
            (qml.expval(qml.X(wires=[1])), 1, "⟨x⟩"),
            (qml.expval(qml.P(wires=[1])), 1, "⟨p⟩"),
            (
                qml.expval(
                    qml.FockStateProjector(np.array([4, 5, 7]),
                                           wires=[1, 2, 3])),
                1,
                "⟨|4,5,7╳4,5,7|⟩",
            ),
            (
                qml.expval(qml.PolyXP(np.array([1, 2, 0, -1.3, 6]), wires=[1
                                                                           ])),
                2,
                "⟨1+2x₀-1.3x₁+6p₁⟩",
            ),
            (
                qml.expval(
                    qml.PolyXP(np.array([[1.2, 2.3, 4.5], [-1.2, 1.2, -1.5],
                                         [-1.3, 4.5, 2.3]]),
                               wires=[1])),
                1,
                "⟨1.2+1.1x₀+3.2p₀+1.2x₀²+2.3p₀²+3x₀p₀⟩",
            ),
            (qml.expval(qml.QuadOperator(
                3.14, wires=[1])), 1, "⟨cos(3.14)x+sin(3.14)p⟩"),
            (qml.var(qml.PauliX(wires=[1])), 1, "Var[X]"),
            (qml.var(qml.PauliY(wires=[1])), 1, "Var[Y]"),
            (qml.var(qml.PauliZ(wires=[1])), 1, "Var[Z]"),
            (qml.var(qml.Hadamard(wires=[1])), 1, "Var[H]"),
            (qml.var(qml.Hermitian(np.eye(4), wires=[1, 2])), 1, "Var[H0]"),
            (qml.var(qml.Hermitian(np.eye(4), wires=[1, 2])), 2, "Var[H0]"),
            (qml.var(qml.NumberOperator(wires=[1])), 1, "Var[n]"),
            (qml.var(qml.X(wires=[1])), 1, "Var[x]"),
            (qml.var(qml.P(wires=[1])), 1, "Var[p]"),
            (
                qml.var(
                    qml.FockStateProjector(np.array([4, 5, 7]),
                                           wires=[1, 2, 3])),
                1,
                "Var[|4,5,7╳4,5,7|]",
            ),
            (
                qml.var(qml.PolyXP(np.array([1, 2, 0, -1.3, 6]), wires=[1])),
                2,
                "Var[1+2x₀-1.3x₁+6p₁]",
            ),
            (
                qml.var(
                    qml.PolyXP(np.array([[1.2, 2.3, 4.5], [-1.2, 1.2, -1.5],
                                         [-1.3, 4.5, 2.3]]),
                               wires=[1])),
                1,
                "Var[1.2+1.1x₀+3.2p₀+1.2x₀²+2.3p₀²+3x₀p₀]",
            ),
            (qml.var(qml.QuadOperator(
                3.14, wires=[1])), 1, "Var[cos(3.14)x+sin(3.14)p]"),
            (qml.sample(qml.PauliX(wires=[1])), 1, "Sample[X]"),
            (qml.sample(qml.PauliY(wires=[1])), 1, "Sample[Y]"),
            (qml.sample(qml.PauliZ(wires=[1])), 1, "Sample[Z]"),
            (qml.sample(qml.Hadamard(wires=[1])), 1, "Sample[H]"),
            (qml.sample(qml.Hermitian(np.eye(4), wires=[1, 2
                                                        ])), 1, "Sample[H0]"),
            (qml.sample(qml.Hermitian(np.eye(4), wires=[1, 2
                                                        ])), 2, "Sample[H0]"),
            (qml.sample(qml.NumberOperator(wires=[1])), 1, "Sample[n]"),
            (qml.sample(qml.X(wires=[1])), 1, "Sample[x]"),
            (qml.sample(qml.P(wires=[1])), 1, "Sample[p]"),
            (
                qml.sample(
                    qml.FockStateProjector(np.array([4, 5, 7]),
                                           wires=[1, 2, 3])),
                1,
                "Sample[|4,5,7╳4,5,7|]",
            ),
            (
                qml.sample(qml.PolyXP(np.array([1, 2, 0, -1.3, 6]), wires=[1
                                                                           ])),
                2,
                "Sample[1+2x₀-1.3x₁+6p₁]",
            ),
            (
                qml.sample(
                    qml.PolyXP(np.array([[1.2, 2.3, 4.5], [-1.2, 1.2, -1.5],
                                         [-1.3, 4.5, 2.3]]),
                               wires=[1])),
                1,
                "Sample[1.2+1.1x₀+3.2p₀+1.2x₀²+2.3p₀²+3x₀p₀]",
            ),
            (qml.sample(qml.QuadOperator(
                3.14, wires=[1])), 1, "Sample[cos(3.14)x+sin(3.14)p]"),
            (
                qml.expval(
                    qml.PauliX(wires=[1]) @ qml.PauliY(wires=[2])
                    @ qml.PauliZ(wires=[3])),
                1,
                "⟨X ⊗ Y ⊗ Z⟩",
            ),
            (
                qml.expval(
                    qml.FockStateProjector(np.array([4, 5, 7]),
                                           wires=[1, 2, 3])
                    @ qml.X(wires=[4])),
                1,
                "⟨|4,5,7╳4,5,7| ⊗ x⟩",
            ),
            (
                qml.expval(
                    qml.FockStateProjector(np.array([4, 5, 7]),
                                           wires=[1, 2, 3])
                    @ qml.X(wires=[4])),
                2,
                "⟨|4,5,7╳4,5,7| ⊗ x⟩",
            ),
            (
                qml.expval(
                    qml.FockStateProjector(np.array([4, 5, 7]),
                                           wires=[1, 2, 3])
                    @ qml.X(wires=[4])),
                3,
                "⟨|4,5,7╳4,5,7| ⊗ x⟩",
            ),
            (
                qml.expval(
                    qml.FockStateProjector(np.array([4, 5, 7]),
                                           wires=[1, 2, 3])
                    @ qml.X(wires=[4])),
                4,
                "⟨|4,5,7╳4,5,7| ⊗ x⟩",
            ),
            (
                qml.sample(
                    qml.Hermitian(np.eye(4), wires=[1, 2]) @ qml.Hermitian(
                        np.eye(4), wires=[0, 3])),
                0,
                "Sample[H0 ⊗ H0]",
            ),
            (
                qml.sample(
                    qml.Hermitian(np.eye(4), wires=[1, 2]) @ qml.Hermitian(
                        2 * np.eye(4), wires=[0, 3])),
                0,
                "Sample[H0 ⊗ H1]",
            ),
            (qml.probs([0]), 0, "Probs"),
            (state(), 0, "State"),
        ],
    )
    def test_output_representation_unicode(self,
                                           unicode_representation_resolver,
                                           obs, wire, target):
        """Test that an Observable instance with return type is properly resolved."""
        assert unicode_representation_resolver.output_representation(
            obs, wire) == target

    def test_fallback_output_representation_unicode(
            self, unicode_representation_resolver):
        """Test that an Observable instance with return type is properly resolved."""
        obs = qml.PauliZ(0)
        obs.return_type = "TestReturnType"

        assert unicode_representation_resolver.output_representation(
            obs, 0) == "TestReturnType[Z]"

    @pytest.mark.parametrize(
        "obs,wire,target",
        [
            (qml.expval(qml.PauliX(wires=[1])), 1, "<X>"),
            (qml.expval(qml.PauliY(wires=[1])), 1, "<Y>"),
            (qml.expval(qml.PauliZ(wires=[1])), 1, "<Z>"),
            (qml.expval(qml.Hadamard(wires=[1])), 1, "<H>"),
            (qml.expval(qml.Hermitian(np.eye(4), wires=[1, 2])), 1, "<H0>"),
            (qml.expval(qml.Hermitian(np.eye(4), wires=[1, 2])), 2, "<H0>"),
            (qml.expval(qml.NumberOperator(wires=[1])), 1, "<n>"),
            (qml.expval(qml.X(wires=[1])), 1, "<x>"),
            (qml.expval(qml.P(wires=[1])), 1, "<p>"),
            (
                qml.expval(
                    qml.FockStateProjector(np.array([4, 5, 7]),
                                           wires=[1, 2, 3])),
                1,
                "<|4,5,7X4,5,7|>",
            ),
            (
                qml.expval(qml.PolyXP(np.array([1, 2, 0, -1.3, 6]), wires=[1
                                                                           ])),
                2,
                "<1+2x_0-1.3x_1+6p_1>",
            ),
            (
                qml.expval(
                    qml.PolyXP(np.array([[1.2, 2.3, 4.5], [-1.2, 1.2, -1.5],
                                         [-1.3, 4.5, 2.3]]),
                               wires=[1])),
                1,
                "<1.2+1.1x_0+3.2p_0+1.2x_0^2+2.3p_0^2+3x_0p_0>",
            ),
            (qml.expval(qml.QuadOperator(
                3.14, wires=[1])), 1, "<cos(3.14)x+sin(3.14)p>"),
            (qml.var(qml.PauliX(wires=[1])), 1, "Var[X]"),
            (qml.var(qml.PauliY(wires=[1])), 1, "Var[Y]"),
            (qml.var(qml.PauliZ(wires=[1])), 1, "Var[Z]"),
            (qml.var(qml.Hadamard(wires=[1])), 1, "Var[H]"),
            (qml.var(qml.Hermitian(np.eye(4), wires=[1, 2])), 1, "Var[H0]"),
            (qml.var(qml.Hermitian(np.eye(4), wires=[1, 2])), 2, "Var[H0]"),
            (qml.var(qml.NumberOperator(wires=[1])), 1, "Var[n]"),
            (qml.var(qml.X(wires=[1])), 1, "Var[x]"),
            (qml.var(qml.P(wires=[1])), 1, "Var[p]"),
            (
                qml.var(
                    qml.FockStateProjector(np.array([4, 5, 7]),
                                           wires=[1, 2, 3])),
                1,
                "Var[|4,5,7X4,5,7|]",
            ),
            (
                qml.var(qml.PolyXP(np.array([1, 2, 0, -1.3, 6]), wires=[1])),
                2,
                "Var[1+2x_0-1.3x_1+6p_1]",
            ),
            (
                qml.var(
                    qml.PolyXP(np.array([[1.2, 2.3, 4.5], [-1.2, 1.2, -1.5],
                                         [-1.3, 4.5, 2.3]]),
                               wires=[1])),
                1,
                "Var[1.2+1.1x_0+3.2p_0+1.2x_0^2+2.3p_0^2+3x_0p_0]",
            ),
            (qml.var(qml.QuadOperator(
                3.14, wires=[1])), 1, "Var[cos(3.14)x+sin(3.14)p]"),
            (qml.sample(qml.PauliX(wires=[1])), 1, "Sample[X]"),
            (qml.sample(qml.PauliY(wires=[1])), 1, "Sample[Y]"),
            (qml.sample(qml.PauliZ(wires=[1])), 1, "Sample[Z]"),
            (qml.sample(qml.Hadamard(wires=[1])), 1, "Sample[H]"),
            (qml.sample(qml.Hermitian(np.eye(4), wires=[1, 2
                                                        ])), 1, "Sample[H0]"),
            (qml.sample(qml.Hermitian(np.eye(4), wires=[1, 2
                                                        ])), 2, "Sample[H0]"),
            (qml.sample(qml.NumberOperator(wires=[1])), 1, "Sample[n]"),
            (qml.sample(qml.X(wires=[1])), 1, "Sample[x]"),
            (qml.sample(qml.P(wires=[1])), 1, "Sample[p]"),
            (
                qml.sample(
                    qml.FockStateProjector(np.array([4, 5, 7]),
                                           wires=[1, 2, 3])),
                1,
                "Sample[|4,5,7X4,5,7|]",
            ),
            (
                qml.sample(qml.PolyXP(np.array([1, 2, 0, -1.3, 6]), wires=[1
                                                                           ])),
                2,
                "Sample[1+2x_0-1.3x_1+6p_1]",
            ),
            (
                qml.sample(
                    qml.PolyXP(np.array([[1.2, 2.3, 4.5], [-1.2, 1.2, -1.5],
                                         [-1.3, 4.5, 2.3]]),
                               wires=[1])),
                1,
                "Sample[1.2+1.1x_0+3.2p_0+1.2x_0^2+2.3p_0^2+3x_0p_0]",
            ),
            (qml.sample(qml.QuadOperator(
                3.14, wires=[1])), 1, "Sample[cos(3.14)x+sin(3.14)p]"),
            (
                qml.expval(
                    qml.PauliX(wires=[1]) @ qml.PauliY(wires=[2])
                    @ qml.PauliZ(wires=[3])),
                1,
                "<X @ Y @ Z>",
            ),
            (
                qml.expval(
                    qml.FockStateProjector(np.array([4, 5, 7]),
                                           wires=[1, 2, 3])
                    @ qml.X(wires=[4])),
                1,
                "<|4,5,7X4,5,7| @ x>",
            ),
            (
                qml.expval(
                    qml.FockStateProjector(np.array([4, 5, 7]),
                                           wires=[1, 2, 3])
                    @ qml.X(wires=[4])),
                2,
                "<|4,5,7X4,5,7| @ x>",
            ),
            (
                qml.expval(
                    qml.FockStateProjector(np.array([4, 5, 7]),
                                           wires=[1, 2, 3])
                    @ qml.X(wires=[4])),
                3,
                "<|4,5,7X4,5,7| @ x>",
            ),
            (
                qml.expval(
                    qml.FockStateProjector(np.array([4, 5, 7]),
                                           wires=[1, 2, 3])
                    @ qml.X(wires=[4])),
                4,
                "<|4,5,7X4,5,7| @ x>",
            ),
            (
                qml.sample(
                    qml.Hermitian(np.eye(4), wires=[1, 2]) @ qml.Hermitian(
                        np.eye(4), wires=[0, 3])),
                0,
                "Sample[H0 @ H0]",
            ),
            (
                qml.sample(
                    qml.Hermitian(np.eye(4), wires=[1, 2]) @ qml.Hermitian(
                        2 * np.eye(4), wires=[0, 3])),
                0,
                "Sample[H0 @ H1]",
            ),
            (qml.probs([0]), 0, "Probs"),
            (state(), 0, "State"),
        ],
    )
    def test_output_representation_ascii(self, ascii_representation_resolver,
                                         obs, wire, target):
        """Test that an Observable instance with return type is properly resolved."""
        assert ascii_representation_resolver.output_representation(
            obs, wire) == target

    def test_element_representation_none(self,
                                         unicode_representation_resolver):
        """Test that element_representation properly handles None."""
        assert unicode_representation_resolver.element_representation(None,
                                                                      0) == ""

    def test_element_representation_str(self, unicode_representation_resolver):
        """Test that element_representation properly handles strings."""
        assert unicode_representation_resolver.element_representation(
            "Test", 0) == "Test"

    def test_element_representation_calls_output(
            self, unicode_representation_resolver):
        """Test that element_representation calls output_representation for returned observables."""

        unicode_representation_resolver.output_representation = Mock()

        obs = qml.sample(qml.PauliX(3))
        wire = 3

        unicode_representation_resolver.element_representation(obs, wire)

        assert unicode_representation_resolver.output_representation.call_args[
            0] == (obs, wire)

    def test_element_representation_calls_operator(
            self, unicode_representation_resolver):
        """Test that element_representation calls operator_representation for all operators that are not returned."""

        unicode_representation_resolver.operator_representation = Mock()

        op = qml.PauliX(3)
        wire = 3

        unicode_representation_resolver.element_representation(op, wire)

        assert unicode_representation_resolver.operator_representation.call_args[
            0] == (op, wire)
コード例 #26
0
ファイル: test_gates.py プロジェクト: ryanhill1/pennylane
 "QubitUnitary":
 qml.QubitUnitary(np.eye(2), wires=[0]),
 "ControlledQubitUnitary":
 qml.ControlledQubitUnitary(np.eye(2), control_wires=[1], wires=[0]),
 "MultiControlledX":
 qml.MultiControlledX(control_wires=[1, 2], wires=[0]),
 "RX":
 qml.RX(0, wires=[0]),
 "RY":
 qml.RY(0, wires=[0]),
 "RZ":
 qml.RZ(0, wires=[0]),
 "Rot":
 qml.Rot(0, 0, 0, wires=[0]),
 "S":
 qml.S(wires=[0]),
 "SWAP":
 qml.SWAP(wires=[0, 1]),
 "ISWAP":
 qml.ISWAP(wires=[0, 1]),
 "T":
 qml.T(wires=[0]),
 "SX":
 qml.SX(wires=[0]),
 "Toffoli":
 qml.Toffoli(wires=[0, 1, 2]),
 "QFT":
 qml.QFT(wires=[0, 1, 2]),
 "IsingXX":
 qml.IsingXX(0, wires=[0, 1]),
 "IsingYY":
コード例 #27
0
 def qnode():
     qml.S(wires=0)
     qml.DoubleExcitationPlus(0.5, wires=[0, 1, 2, 3])
     return qml.expval(qml.PauliZ(0))
コード例 #28
0
 def qnode():
     qml.S(wires=0)
     qml.S(wires=0).inv()
     qml.T(wires=0)
     qml.T(wires=0).inv()
     return qml.expval(qml.PauliZ(0))
コード例 #29
0
 def qnode():
     qml.S(wires=0)
     qml.QubitUnitary(U, wires=0)
     return qml.expval(qml.PauliZ(0))
コード例 #30
0
    "Hadamard": qml.Hadamard(wires=[0]),
    "MultiRZ": qml.MultiRZ(0, wires=[0]),
    "PauliX": qml.PauliX(wires=[0]),
    "PauliY": qml.PauliY(wires=[0]),
    "PauliZ": qml.PauliZ(wires=[0]),
    "PhaseShift": qml.PhaseShift(0, wires=[0]),
    "ControlledPhaseShift": qml.ControlledPhaseShift(0, wires=[0, 1]),
    "QubitStateVector": qml.QubitStateVector(np.array([1.0, 0.0]), wires=[0]),
    "QubitUnitary": qml.QubitUnitary(np.eye(2), wires=[0]),
    "ControlledQubitUnitary": qml.ControlledQubitUnitary(np.eye(2), control_wires=[1], wires=[0]),
    "MultiControlledX": qml.MultiControlledX(control_wires=[1, 2], wires=[0]),
    "RX": qml.RX(0, wires=[0]),
    "RY": qml.RY(0, wires=[0]),
    "RZ": qml.RZ(0, wires=[0]),
    "Rot": qml.Rot(0, 0, 0, wires=[0]),
    "S": qml.S(wires=[0]),
    "SWAP": qml.SWAP(wires=[0, 1]),
    "T": qml.T(wires=[0]),
    "SX": qml.SX(wires=[0]),
    "Toffoli": qml.Toffoli(wires=[0, 1, 2]),
    "QFT": qml.QFT(wires=[0, 1, 2]),
    "SingleExcitation": qml.SingleExcitation(0, wires=[0, 1]),
    "SingleExcitationPlus": qml.SingleExcitationPlus(0, wires=[0, 1]),
    "SingleExcitationMinus": qml.SingleExcitationMinus(0, wires=[0, 1]),
    "DoubleExcitation": qml.DoubleExcitation(0, wires=[0, 1, 2, 3]),
    "DoubleExcitationPlus": qml.DoubleExcitationPlus(0, wires=[0, 1, 2, 3]),
    "DoubleExcitationMinus": qml.DoubleExcitationMinus(0, wires=[0, 1, 2, 3]),
    "QubitCarry": qml.QubitCarry(wires=[0, 1, 2, 3]),
    "QubitSum:": qml.QubitSum(wires=[0, 1, 2]),
}