コード例 #1
0
ファイル: pkb.py プロジェクト: shaokaiyang/PerfKitBenchmarker
def RunBenchmarks():
  """Runs all benchmarks in PerfKitBenchmarker.

  Returns:
    Exit status for the process.
  """
  benchmark_specs = _CreateBenchmarkSpecs()
  if FLAGS.randomize_run_order:
    random.shuffle(benchmark_specs)
  if FLAGS.dry_run:
    print 'PKB will run with the following configurations:'
    for spec in benchmark_specs:
      print spec
      print ''
    return 0

  collector = SampleCollector()
  try:
    tasks = [(RunBenchmarkTask, (spec,), {})
             for spec in benchmark_specs]
    if FLAGS.run_with_pdb and FLAGS.run_processes == 1:
      spec_sample_tuples = RunBenchmarkTasksInSeries(tasks)
    else:
      spec_sample_tuples = background_tasks.RunParallelProcesses(
          tasks, FLAGS.run_processes, FLAGS.run_processes_delay)
    benchmark_specs, sample_lists = zip(*spec_sample_tuples)
    for sample_list in sample_lists:
      collector.samples.extend(sample_list)

  finally:
    if collector.samples:
      collector.PublishSamples()

    if benchmark_specs:
      logging.info(benchmark_status.CreateSummary(benchmark_specs))

    logging.info('Complete logs can be found at: %s',
                 vm_util.PrependTempDir(LOG_FILE_NAME))
    logging.info('Completion statuses can be found at: %s',
                 vm_util.PrependTempDir(COMPLETION_STATUS_FILE_NAME))

  if stages.TEARDOWN not in FLAGS.run_stage:
    logging.info(
        'To run again with this setup, please use --run_uri=%s', FLAGS.run_uri)

  if FLAGS.archive_bucket:
    archive.ArchiveRun(vm_util.GetTempDir(), FLAGS.archive_bucket,
                       gsutil_path=FLAGS.gsutil_path,
                       prefix=FLAGS.run_uri + '_')

  # Write completion status file(s)
  completion_status_file_name = (
      vm_util.PrependTempDir(COMPLETION_STATUS_FILE_NAME))
  with open(completion_status_file_name, 'w') as status_file:
    _WriteCompletionStatusFile(benchmark_specs, status_file)
  if FLAGS.completion_status_file:
    with open(FLAGS.completion_status_file, 'w') as status_file:
      _WriteCompletionStatusFile(benchmark_specs, status_file)

  all_benchmarks_succeeded = all(spec.status == benchmark_status.SUCCEEDED
                                 for spec in benchmark_specs)
  return 0 if all_benchmarks_succeeded else 1
コード例 #2
0
def ParseResults(job_file,
                 fio_json_result,
                 base_metadata=None,
                 log_file_base='',
                 bin_vals=None,
                 skip_latency_individual_stats=False,
                 instance=None):
    """Parse fio json output into samples.

  Args:
    job_file: The contents of the fio job file.
    fio_json_result: Fio results in json format.
    base_metadata: Extra metadata to annotate the samples with.
    log_file_base: String. Base name for fio log files.
    bin_vals: A 2-D list of int. Each list represents a list of
      bin values in histgram log. Calculated from remote VM using
      fio/tools/hist/fiologparser_hist.py
    skip_latency_individual_stats: Bool. If true, skips pulling latency stats
      that are not aggregate.
    instance: on which machines the test has been executed

  Returns:
    A list of sample.Sample objects.
  """
    samples = []
    # The samples should all have the same timestamp because they
    # come from the same fio run.
    timestamp = time.time()
    parameter_metadata = ParseJobFile(job_file)
    io_modes = list(DATA_DIRECTION.values())

    # clat_hist files are indexed sequentially by inner job.  If you have a job
    # file with 2 jobs, each with numjobs=4 you will have 8 clat_hist files.
    clat_hist_idx = 0

    for job in fio_json_result['jobs']:
        job_name = job['jobname']
        parameters = parameter_metadata[job_name]
        parameters['fio_job'] = job_name
        if base_metadata:
            parameters.update(base_metadata)
        for mode in io_modes:
            if job[mode]['io_bytes']:
                metric_name = '%s:%s' % (job_name, mode)
                bw_metadata = {
                    'bw_min': job[mode]['bw_min'],
                    'bw_max': job[mode]['bw_max'],
                    'bw_dev': job[mode]['bw_dev'],
                    'bw_agg': job[mode]['bw_agg'],
                    'bw_mean': job[mode]['bw_mean']
                }
                bw_metadata.update(parameters)
                samples.append(
                    sample.Sample('%s:bandwidth' % metric_name,
                                  job[mode]['bw'],
                                  'KB/s',
                                  bw_metadata,
                                  instance=instance))

                # There is one sample whose metric is '<metric_name>:latency'
                # with all of the latency statistics in its metadata, and then
                # a bunch of samples whose metrics are
                # '<metric_name>:latency:min' through
                # '<metric_name>:latency:p99.99' that hold the individual
                # latency numbers as values. This is for historical reasons.
                clat_key = 'clat' if 'clat' in job[mode] else 'clat_ns'
                clat_section = job[mode][clat_key]

                def _ConvertClat(value):
                    if clat_key is 'clat_ns':
                        # convert from nsec to usec
                        return value / 1000
                    else:
                        return value

                percentiles = clat_section['percentile']
                lat_statistics = [('min', _ConvertClat(clat_section['min'])),
                                  ('max', _ConvertClat(clat_section['max'])),
                                  ('mean', _ConvertClat(clat_section['mean'])),
                                  ('stddev',
                                   _ConvertClat(clat_section['stddev']))]
                if not skip_latency_individual_stats:
                    lat_statistics += [
                        ('p1', _ConvertClat(percentiles['1.000000'])),
                        ('p5', _ConvertClat(percentiles['5.000000'])),
                        ('p10', _ConvertClat(percentiles['10.000000'])),
                        ('p20', _ConvertClat(percentiles['20.000000'])),
                        ('p30', _ConvertClat(percentiles['30.000000'])),
                        ('p40', _ConvertClat(percentiles['40.000000'])),
                        ('p50', _ConvertClat(percentiles['50.000000'])),
                        ('p60', _ConvertClat(percentiles['60.000000'])),
                        ('p70', _ConvertClat(percentiles['70.000000'])),
                        ('p80', _ConvertClat(percentiles['80.000000'])),
                        ('p90', _ConvertClat(percentiles['90.000000'])),
                        ('p95', _ConvertClat(percentiles['95.000000'])),
                        ('p99', _ConvertClat(percentiles['99.000000'])),
                        ('p99.5', _ConvertClat(percentiles['99.500000'])),
                        ('p99.9', _ConvertClat(percentiles['99.900000'])),
                        ('p99.95', _ConvertClat(percentiles['99.950000'])),
                        ('p99.99', _ConvertClat(percentiles['99.990000']))
                    ]

                lat_metadata = parameters.copy()
                for name, val in lat_statistics:
                    lat_metadata[name] = val
                samples.append(
                    sample.Sample('%s:latency' % metric_name,
                                  _ConvertClat(job[mode][clat_key]['mean']),
                                  'usec',
                                  lat_metadata,
                                  timestamp,
                                  instance=instance))

                for stat_name, stat_val in lat_statistics:
                    samples.append(
                        sample.Sample('%s:latency:%s' %
                                      (metric_name, stat_name),
                                      stat_val,
                                      'usec',
                                      parameters,
                                      timestamp,
                                      instance=instance))

                samples.append(
                    sample.Sample('%s:iops' % metric_name,
                                  job[mode]['iops'],
                                  '',
                                  parameters,
                                  timestamp,
                                  instance=instance))
        if log_file_base and bin_vals:
            # Parse histograms
            aggregates = collections.defaultdict(collections.Counter)
            for _ in range(int(parameters.get('numjobs', 1))):
                clat_hist_idx += 1
                hist_file_path = vm_util.PrependTempDir(
                    '%s_clat_hist.%s.log' %
                    (log_file_base, str(clat_hist_idx)))
                hists = _ParseHistogram(hist_file_path,
                                        bin_vals[clat_hist_idx - 1])

                for key in hists:
                    aggregates[key].update(hists[key])
            samples += _BuildHistogramSamples(aggregates,
                                              job_name,
                                              parameters,
                                              instance=instance)

    return samples
コード例 #3
0
def SetUpPKB():
    """Set globals and environment variables for PKB.

  After SetUpPKB() returns, it should be possible to call PKB
  functions, like benchmark_spec.Prepare() or benchmark_spec.Run().

  SetUpPKB() also modifies the local file system by creating a temp
  directory and storing new SSH keys.
  """
    try:
        _InitializeRunUri()
    except errors.Error as e:
        logging.error(e)
        sys.exit(1)

    # Initialize logging.
    vm_util.GenTempDir()
    if FLAGS.use_pkb_logging:
        log_util.ConfigureLogging(
            stderr_log_level=log_util.LOG_LEVELS[FLAGS.log_level],
            log_path=vm_util.PrependTempDir(LOG_FILE_NAME),
            run_uri=FLAGS.run_uri,
            file_log_level=log_util.LOG_LEVELS[FLAGS.file_log_level])
    logging.info('PerfKitBenchmarker version: %s', version.VERSION)

    # Translate deprecated flags and log all provided flag values.
    disk.WarnAndTranslateDiskFlags()
    _LogCommandLineFlags()

    # Register skip pending runs functionality.
    RegisterSkipPendingRunsCheck(_SkipPendingRunsFile)

    # Check environment.
    if not FLAGS.ignore_package_requirements:
        requirements.CheckBasicRequirements()

    for executable in REQUIRED_EXECUTABLES:
        if not vm_util.ExecutableOnPath(executable):
            raise errors.Setup.MissingExecutableError(
                'Could not find required executable "%s"' % executable)

    # Check mutually exclusive flags
    if FLAGS.run_stage_iterations > 1 and FLAGS.run_stage_time > 0:
        raise errors.Setup.InvalidFlagConfigurationError(
            'Flags run_stage_iterations and run_stage_time are mutually exclusive'
        )

    vm_util.SSHKeyGen()

    if FLAGS.static_vm_file:
        with open(FLAGS.static_vm_file) as fp:
            static_virtual_machine.StaticVirtualMachine.ReadStaticVirtualMachineFile(
                fp)

    events.initialization_complete.send(parsed_flags=FLAGS)

    benchmark_lookup.SetBenchmarkModuleFunction(benchmark_sets.BenchmarkModule)
    package_lookup.SetPackageModuleFunction(benchmark_sets.PackageModule)

    # Update max_concurrent_threads to use at least as many threads as VMs. This
    # is important for the cluster_boot benchmark where we want to launch the VMs
    # in parallel.
    if not FLAGS.max_concurrent_threads:
        FLAGS.max_concurrent_threads = max(
            background_tasks.MAX_CONCURRENT_THREADS, FLAGS.num_vms)
        logging.info('Setting --max_concurrent_threads=%d.',
                     FLAGS.max_concurrent_threads)
コード例 #4
0
def RunWithExec(vm, exec_path, remote_job_file_path, job_file_contents):
    """Spawn fio and gather the results.

  Args:
    vm: vm to run the benchmark on.
    exec_path: string path to the fio executable.
    remote_job_file_path: path, on the vm, to the location of the job file.
    job_file_contents: string contents of the fio job file.

  Returns:
    A list of sample.Sample objects.
  """
    logging.info('FIO running on %s', vm)

    disk = vm.scratch_disks[0]
    mount_point = disk.mount_point
    if FLAGS.fio_write_against_multiple_clients:
        mount_point = '%s/%s' % (disk.mount_point, vm.name)
        logging.info('FIO mount point changed to %s', mount_point)

    job_file_string = GetOrGenerateJobFileString(
        FLAGS.fio_jobfile, FLAGS.fio_generate_scenarios, AgainstDevice(), disk,
        FLAGS.fio_io_depths, FLAGS.fio_num_jobs, FLAGS.fio_working_set_size,
        FLAGS.fio_blocksize, FLAGS.fio_runtime, FLAGS.fio_parameters,
        job_file_contents)
    job_file_path = vm_util.PrependTempDir(vm.name + LOCAL_JOB_FILE_SUFFIX)
    with open(job_file_path, 'w') as job_file:
        job_file.write(job_file_string)
        logging.info('Wrote fio job file at %s', job_file_path)
        logging.info(job_file_string)

    vm.PushFile(job_file_path, remote_job_file_path)

    if AgainstDevice():
        fio_command = '%s --output-format=json --filename=%s %s' % (
            exec_path, disk.GetDevicePath(), remote_job_file_path)
    else:
        fio_command = '%s --output-format=json --directory=%s %s' % (
            exec_path, mount_point, remote_job_file_path)

    collect_logs = any([
        FLAGS.fio_lat_log, FLAGS.fio_bw_log, FLAGS.fio_iops_log,
        FLAGS.fio_hist_log
    ])

    log_file_base = ''
    if collect_logs:
        log_file_base = '%s_%s' % (PKB_FIO_LOG_FILE_NAME, str(time.time()))
        fio_command = ' '.join([fio_command, GetLogFlags(log_file_base)])

    # TODO(user): This only gives results at the end of a job run
    #      so the program pauses here with no feedback to the user.
    #      This is a pretty lousy experience.
    logging.info('FIO Results:')

    start_time = time.time()
    stdout, _ = vm.RobustRemoteCommand(fio_command, should_log=True)
    end_time = time.time()
    bin_vals = []
    if collect_logs:
        vm.PullFile(vm_util.GetTempDir(), '%s*.log' % log_file_base)
        if FLAGS.fio_hist_log:
            num_logs = int(
                vm.RemoteCommand('ls %s_clat_hist.*.log | wc -l' %
                                 log_file_base)[0])
            bin_vals += [
                fio.ComputeHistogramBinVals(
                    vm, '%s_clat_hist.%s.log' % (log_file_base, idx + 1))
                for idx in range(num_logs)
            ]
    samples = fio.ParseResults(job_file_string,
                               json.loads(stdout),
                               log_file_base=log_file_base,
                               bin_vals=bin_vals)

    samples.append(
        sample.Sample('start_time', start_time, 'sec', samples[0].metadata))
    samples.append(
        sample.Sample('end_time', end_time, 'sec', samples[0].metadata))

    return samples
コード例 #5
0
ファイル: pkb.py プロジェクト: lwatta/PerfKitBenchmarker
def RunBenchmarks(publish=True):
    """Runs all benchmarks in PerfKitBenchmarker.

  Args:
    publish: A boolean indicating whether results should be published.

  Returns:
    Exit status for the process.
  """
    if FLAGS.version:
        print version.VERSION
        return

    _LogCommandLineFlags()

    if FLAGS.os_type == benchmark_spec.WINDOWS and not vm_util.RunningOnWindows(
    ):
        logging.error('In order to run benchmarks on Windows VMs, you must be '
                      'running on Windows.')
        return 1

    collector = SampleCollector()

    if FLAGS.static_vm_file:
        with open(FLAGS.static_vm_file) as fp:
            static_virtual_machine.StaticVirtualMachine.ReadStaticVirtualMachineFile(
                fp)

    run_status_lists = []
    benchmark_tuple_list = benchmark_sets.GetBenchmarksFromFlags()
    total_benchmarks = len(benchmark_tuple_list)
    benchmark_counts = collections.defaultdict(itertools.count)
    args = []
    for i, benchmark_tuple in enumerate(benchmark_tuple_list):
        benchmark_module, user_config = benchmark_tuple
        benchmark_name = benchmark_module.BENCHMARK_NAME
        benchmark_uid = benchmark_name + str(
            benchmark_counts[benchmark_name].next())
        run_status_lists.append(
            [benchmark_name, benchmark_uid, benchmark_status.SKIPPED])
        args.append((benchmark_module, collector, i + 1, total_benchmarks,
                     benchmark_module.GetConfig(user_config), benchmark_uid))

    try:
        for run_args, run_status_list in zip(args, run_status_lists):
            benchmark_module, _, sequence_number, _, _, benchmark_uid = run_args
            benchmark_name = benchmark_module.BENCHMARK_NAME
            try:
                run_status_list[2] = benchmark_status.FAILED
                RunBenchmark(*run_args)
                run_status_list[2] = benchmark_status.SUCCEEDED
            except BaseException as e:
                msg = 'Benchmark {0}/{1} {2} (UID: {3}) failed.'.format(
                    sequence_number, total_benchmarks, benchmark_name,
                    benchmark_uid)
                if (isinstance(e, KeyboardInterrupt)
                        or FLAGS.stop_after_benchmark_failure):
                    logging.error('%s Execution will not continue.', msg)
                    break
                else:
                    logging.error('%s Execution will continue.', msg)
    finally:
        if collector.samples:
            collector.PublishSamples()

        if run_status_lists:
            logging.info(benchmark_status.CreateSummary(run_status_lists))
        logging.info('Complete logs can be found at: %s',
                     vm_util.PrependTempDir(LOG_FILE_NAME))

    if FLAGS.run_stage not in [STAGE_ALL, STAGE_TEARDOWN]:
        logging.info('To run again with this setup, please use --run_uri=%s',
                     FLAGS.run_uri)

    if FLAGS.archive_bucket:
        archive.ArchiveRun(vm_util.GetTempDir(),
                           FLAGS.archive_bucket,
                           gsutil_path=FLAGS.gsutil_path,
                           prefix=FLAGS.run_uri + '_')
    all_benchmarks_succeeded = all(r[2] == benchmark_status.SUCCEEDED
                                   for r in run_status_lists)
    return 0 if all_benchmarks_succeeded else 1
コード例 #6
0
def Run(benchmark_spec):
    """Spawn fio and gather the results.

    Args:
      benchmark_spec: The benchmark specification. Contains all data that is
          required to run the benchmark.

    Returns:
      A list of sample.Sample objects.
    """
    vm = benchmark_spec.vms[0]
    logging.info('FIO running on %s', vm)

    disk = vm.scratch_disks[0]
    mount_point = disk.mount_point

    job_file_string = GetOrGenerateJobFileString(
        FLAGS.fio_jobfile, FLAGS.fio_generate_scenarios, AgainstDevice(), disk,
        FLAGS.fio_io_depths, FLAGS.fio_num_jobs, FLAGS.fio_working_set_size,
        FLAGS.fio_blocksize, FLAGS.fio_runtime, FLAGS.fio_parameters)
    job_file_path = vm_util.PrependTempDir(LOCAL_JOB_FILE_NAME)
    with open(job_file_path, 'w') as job_file:
        job_file.write(job_file_string)
        logging.info('Wrote fio job file at %s', job_file_path)

    vm.PushFile(job_file_path, REMOTE_JOB_FILE_PATH)

    if AgainstDevice():
        fio_command = 'sudo %s --output-format=json --filename=%s %s' % (
            fio.FIO_PATH, disk.GetDevicePath(), REMOTE_JOB_FILE_PATH)
    else:
        fio_command = 'sudo %s --output-format=json --directory=%s %s' % (
            fio.FIO_PATH, mount_point, REMOTE_JOB_FILE_PATH)

    collect_logs = any([
        FLAGS.fio_lat_log, FLAGS.fio_bw_log, FLAGS.fio_iops_log,
        FLAGS.fio_hist_log
    ])

    log_file_base = ''
    if collect_logs:
        log_file_base = '%s_%s' % (PKB_FIO_LOG_FILE_NAME, str(time.time()))
        fio_command = ' '.join([fio_command, GetLogFlags(log_file_base)])

    # TODO(user): This only gives results at the end of a job run
    #      so the program pauses here with no feedback to the user.
    #      This is a pretty lousy experience.
    logging.info('FIO Results:')

    stdout, stderr = vm.RobustRemoteCommand(fio_command, should_log=True)
    bin_vals = []
    if collect_logs:
        vm.PullFile(vm_util.GetTempDir(), '%s*.log' % log_file_base)
        if FLAGS.fio_hist_log:
            num_logs = int(
                vm.RemoteCommand('ls %s_clat_hist.*.log | wc -l' %
                                 log_file_base)[0])
            bin_vals += [
                fio.ComputeHistogramBinVals(
                    vm, '%s_clat_hist.%s.log' % (log_file_base, idx + 1))
                for idx in range(num_logs)
            ]
    samples = fio.ParseResults(job_file_string,
                               json.loads(stdout),
                               log_file_base=log_file_base,
                               bin_vals=bin_vals)

    return samples
コード例 #7
0
ファイル: pkb.py プロジェクト: csikydody/PerfKitBenchmarker
def RunBenchmarks():
    """Runs all benchmarks in PerfKitBenchmarker.

  Returns:
    Exit status for the process.
  """
    if FLAGS.version:
        print version.VERSION
        return

    _LogCommandLineFlags()

    if FLAGS.os_type == os_types.WINDOWS and not vm_util.RunningOnWindows():
        logging.error('In order to run benchmarks on Windows VMs, you must be '
                      'running on Windows.')
        return 1

    collector = SampleCollector()

    if FLAGS.static_vm_file:
        with open(FLAGS.static_vm_file) as fp:
            static_virtual_machine.StaticVirtualMachine.ReadStaticVirtualMachineFile(
                fp)

    benchmark_run_list = _CreateBenchmarkRunList()
    try:
        for run_args, run_status_list in benchmark_run_list:
            benchmark_module, sequence_number, _, _, benchmark_uid = run_args
            benchmark_name = benchmark_module.BENCHMARK_NAME
            try:
                run_status_list[2] = benchmark_status.FAILED
                RunBenchmark(*run_args, collector=collector)
                run_status_list[2] = benchmark_status.SUCCEEDED
            except BaseException as e:
                msg = 'Benchmark {0}/{1} {2} (UID: {3}) failed.'.format(
                    sequence_number, len(benchmark_run_list), benchmark_name,
                    benchmark_uid)
                if (isinstance(e, KeyboardInterrupt)
                        or FLAGS.stop_after_benchmark_failure):
                    logging.error('%s Execution will not continue.', msg)
                    break
                else:
                    logging.error('%s Execution will continue.', msg)
    finally:
        if collector.samples:
            collector.PublishSamples()

        if benchmark_run_list:
            run_status_lists = tuple(r for _, r in benchmark_run_list)
            logging.info(benchmark_status.CreateSummary(run_status_lists))
        logging.info('Complete logs can be found at: %s',
                     vm_util.PrependTempDir(LOG_FILE_NAME))

    if stages.TEARDOWN not in FLAGS.run_stage:
        logging.info('To run again with this setup, please use --run_uri=%s',
                     FLAGS.run_uri)

    if FLAGS.archive_bucket:
        archive.ArchiveRun(vm_util.GetTempDir(),
                           FLAGS.archive_bucket,
                           gsutil_path=FLAGS.gsutil_path,
                           prefix=FLAGS.run_uri + '_')
    all_benchmarks_succeeded = all(r[2] == benchmark_status.SUCCEEDED
                                   for _, r in benchmark_run_list)
    return 0 if all_benchmarks_succeeded else 1
コード例 #8
0
ファイル: pkb.py プロジェクト: msurovcak/PerfKitBenchmarker
def RunBenchmarks(publish=True):
  """Runs all benchmarks in PerfKitBenchmarker.

  Args:
    publish: A boolean indicating whether results should be published.

  Returns:
    Exit status for the process.
  """
  if FLAGS.version:
    print version.VERSION
    return

  for executable in REQUIRED_EXECUTABLES:
    if not vm_util.ExecutableOnPath(executable):
      logging.error('Could not find required executable "%s".' % executable)
      return 1

  if FLAGS.run_uri is None:
    if FLAGS.run_stage not in [STAGE_ALL, STAGE_PREPARE]:
      # Attempt to get the last modified run directory.
      run_uri = vm_util.GetLastRunUri()
      if run_uri:
        FLAGS.run_uri = run_uri
        logging.warning(
            'No run_uri specified. Attempting to run "%s" with --run_uri=%s.',
            FLAGS.run_stage, FLAGS.run_uri)
      else:
        logging.error(
            'No run_uri specified. Could not run "%s".', FLAGS.run_stage)
        return 1
    else:
      FLAGS.run_uri = str(uuid.uuid4())[-8:]
  elif not FLAGS.run_uri.isalnum() or len(FLAGS.run_uri) > MAX_RUN_URI_LENGTH:
    logging.error('run_uri must be alphanumeric and less than or equal '
                  'to 10 characters in length.')
    return 1

  vm_util.GenTempDir()
  log_util.ConfigureLogging(
      stderr_log_level=log_util.LOG_LEVELS[FLAGS.log_level],
      log_path=vm_util.PrependTempDir(LOG_FILE_NAME),
      run_uri=FLAGS.run_uri)
  _LogCommandLineFlags()

  if FLAGS.os_type == benchmark_spec.WINDOWS and not vm_util.RunningOnWindows():
    logging.error('In order to run benchmarks on Windows VMs, you must be '
                  'running on Windows.')
    return 1

  vm_util.SSHKeyGen()
  collector = SampleCollector()
  events.initialization_complete.send(parsed_flags=FLAGS)

  if FLAGS.static_vm_file:
    with open(FLAGS.static_vm_file) as fp:
      static_virtual_machine.StaticVirtualMachine.ReadStaticVirtualMachineFile(
          fp)

  if FLAGS.benchmark_config_pair:
    # Convert benchmark_config_pair into a {benchmark_name: file_name}
    # dictionary.
    tmp_dict = {}
    for config_pair in FLAGS.benchmark_config_pair:
      pair = config_pair.split(':')
      tmp_dict[pair[0]] = pair[1]
    FLAGS.benchmark_config_pair = tmp_dict

  try:
    benchmark_list = benchmark_sets.GetBenchmarksFromFlags()
    total_benchmarks = len(benchmark_list)
    if FLAGS.parallelism > 1:
      sequence_range = range(total_benchmarks, 0, -1)
      args = [((benchmark, collector, sequence_counter, total_benchmarks), {})
              for benchmark, sequence_counter
              in zip(benchmark_list, sequence_range)]
      vm_util.RunThreaded(
          RunBenchmark, args, max_concurrent_threads=FLAGS.parallelism)
    else:
      sequence_range = range(1, total_benchmarks + 1)
      for benchmark, sequence_counter in zip(benchmark_list, sequence_range):
        RunBenchmark(benchmark, collector, sequence_counter, total_benchmarks)
  finally:
    if collector.samples:
      collector.PublishSamples()

    logging.info('Complete logs can be found at: %s',
                 vm_util.PrependTempDir(LOG_FILE_NAME))

  if FLAGS.run_stage not in [STAGE_ALL, STAGE_CLEANUP]:
    logging.info(
        'To run again with this setup, please use --run_uri=%s', FLAGS.run_uri)
コード例 #9
0
def Run(benchmark_spec):
    """Spawn fio and gather the results.

  Args:
    benchmark_spec: The benchmark specification. Contains all data that is
        required to run the benchmark.

  Returns:
    A list of sample.Sample objects.
  """
    vm = benchmark_spec.vms[0]
    logging.info('FIO running on %s', vm)

    disk = vm.scratch_disks[0]
    mount_point = disk.mount_point

    job_file_string = GetOrGenerateJobFileString(FLAGS.fio_jobfile,
                                                 FLAGS.fio_generate_scenarios,
                                                 AgainstDevice(), disk,
                                                 FLAGS.fio_io_depths,
                                                 FLAGS.fio_working_set_size)
    job_file_path = vm_util.PrependTempDir(LOCAL_JOB_FILE_NAME)
    with open(job_file_path, 'w') as job_file:
        job_file.write(job_file_string)
        logging.info('Wrote fio job file at %s', job_file_path)

    vm.PushFile(job_file_path, REMOTE_JOB_FILE_PATH)

    if AgainstDevice():
        fio_command = 'sudo %s --output-format=json --filename=%s %s' % (
            fio.FIO_PATH, disk.GetDevicePath(), REMOTE_JOB_FILE_PATH)
    else:
        fio_command = 'sudo %s --output-format=json --directory=%s %s' % (
            fio.FIO_PATH, mount_point, REMOTE_JOB_FILE_PATH)

    samples = []

    def RunIt(repeat_number=None,
              minutes_since_start=None,
              total_repeats=None):
        """Run the actual fio command on the VM and save the results.

    Args:
      repeat_number: if given, our number in a sequence of repetitions.
      minutes_since_start: if given, minutes since the start of repetition.
      total_repeats: if given, the total number of repetitions to do.
    """

        if repeat_number:
            logging.info('**** Repetition number %s of %s ****', repeat_number,
                         total_repeats)

        stdout, stderr = vm.RobustRemoteCommand(fio_command, should_log=True)

        if repeat_number:
            base_metadata = {
                'repeat_number': repeat_number,
                'minutes_since_start': minutes_since_start
            }
        else:
            base_metadata = None

        samples.extend(
            fio.ParseResults(job_file_string,
                             json.loads(stdout),
                             base_metadata=base_metadata))

    # TODO(user): This only gives results at the end of a job run
    #      so the program pauses here with no feedback to the user.
    #      This is a pretty lousy experience.
    logging.info('FIO Results:')

    if not FLAGS['fio_run_for_minutes'].present:
        RunIt()
    else:
        RunForMinutes(RunIt, FLAGS.fio_run_for_minutes, MINUTES_PER_JOB)

    return samples
コード例 #10
0
def ParseResults(job_file, fio_json_result, base_metadata=None,
                 log_file_base='', bin_vals=[]):
  """Parse fio json output into samples.

  Args:
    job_file: The contents of the fio job file.
    fio_json_result: Fio results in json format.
    base_metadata: Extra metadata to annotate the samples with.
    log_file_base: String. Base name for fio log files.
    bin_vals: A 2-D list of int. Each list represents a list of
      bin values in histgram log. Calculated from remote VM using
      fio/tools/hist/fiologparser_hist.py

  Returns:
    A list of sample.Sample objects.
  """
  samples = []
  # The samples should all have the same timestamp because they
  # come from the same fio run.
  timestamp = time.time()
  parameter_metadata = ParseJobFile(job_file)
  io_modes = DATA_DIRECTION.values()
  for (idx, job) in enumerate(fio_json_result['jobs']):
    job_name = job['jobname']
    parameters = parameter_metadata[job_name]
    parameters['fio_job'] = job_name
    if base_metadata:
      parameters.update(base_metadata)
    for mode in io_modes:
      if job[mode]['io_bytes']:
        metric_name = '%s:%s' % (job_name, mode)
        bw_metadata = {
            'bw_min': job[mode]['bw_min'],
            'bw_max': job[mode]['bw_max'],
            'bw_dev': job[mode]['bw_dev'],
            'bw_agg': job[mode]['bw_agg'],
            'bw_mean': job[mode]['bw_mean']}
        bw_metadata.update(parameters)
        samples.append(
            sample.Sample('%s:bandwidth' % metric_name,
                          job[mode]['bw'],
                          'KB/s', bw_metadata))

        # There is one sample whose metric is '<metric_name>:latency'
        # with all of the latency statistics in its metadata, and then
        # a bunch of samples whose metrics are
        # '<metric_name>:latency:min' through
        # '<metric_name>:latency:p99.99' that hold the individual
        # latency numbers as values. This is for historical reasons.
        clat_section = job[mode]['clat']
        percentiles = clat_section['percentile']
        lat_statistics = [
            ('min', clat_section['min']),
            ('max', clat_section['max']),
            ('mean', clat_section['mean']),
            ('stddev', clat_section['stddev']),
            ('p1', percentiles['1.000000']),
            ('p5', percentiles['5.000000']),
            ('p10', percentiles['10.000000']),
            ('p20', percentiles['20.000000']),
            ('p30', percentiles['30.000000']),
            ('p40', percentiles['40.000000']),
            ('p50', percentiles['50.000000']),
            ('p60', percentiles['60.000000']),
            ('p70', percentiles['70.000000']),
            ('p80', percentiles['80.000000']),
            ('p90', percentiles['90.000000']),
            ('p95', percentiles['95.000000']),
            ('p99', percentiles['99.000000']),
            ('p99.5', percentiles['99.500000']),
            ('p99.9', percentiles['99.900000']),
            ('p99.95', percentiles['99.950000']),
            ('p99.99', percentiles['99.990000'])]

        lat_metadata = parameters.copy()
        for name, val in lat_statistics:
          lat_metadata[name] = val
        samples.append(
            sample.Sample('%s:latency' % metric_name,
                          job[mode]['clat']['mean'],
                          'usec', lat_metadata, timestamp))

        for stat_name, stat_val in lat_statistics:
          samples.append(
              sample.Sample('%s:latency:%s' % (metric_name, stat_name),
                            stat_val, 'usec', parameters, timestamp))

        samples.append(
            sample.Sample('%s:iops' % metric_name,
                          job[mode]['iops'], '', parameters, timestamp))
    if log_file_base and bin_vals:
      # Parse histograms
      hist_file_path = vm_util.PrependTempDir(
          '%s_clat_hist.%s.log' % (log_file_base, str(idx + 1)))
      samples += _ParseHistogram(
          hist_file_path, bin_vals[idx], job_name, parameters)
  return samples
コード例 #11
0
ファイル: pkb.py プロジェクト: zlim/PerfKitBenchmarker
def RunBenchmarks(publish=True):
    """Runs all benchmarks in PerfKitBenchmarker.

  Args:
    publish: A boolean indicating whether results should be published.

  Returns:
    Exit status for the process.
  """
    if FLAGS.version:
        print version.VERSION
        return

    if FLAGS.run_uri is None:
        if FLAGS.run_stage not in [STAGE_ALL, STAGE_PREPARE]:
            logging.error('Cannot run "%s" with unspecified run_uri.',
                          FLAGS.run_stage)
            return 1
        else:
            FLAGS.run_uri = str(uuid.uuid4())[-8:]
    elif not FLAGS.run_uri.isalnum() or len(
            FLAGS.run_uri) > MAX_RUN_URI_LENGTH:
        logging.error('run_uri must be alphanumeric and less than or equal '
                      'to 10 characters in length.')
        return 1

    vm_util.GenTempDir()
    log_util.ConfigureLogging(
        stderr_log_level=log_util.LOG_LEVELS[FLAGS.log_level],
        log_path=vm_util.PrependTempDir('pkb.log'),
        run_uri=FLAGS.run_uri)

    unknown_benchmarks = ListUnknownBenchmarks()
    if unknown_benchmarks:
        logging.error('Unknown benchmark(s) provided: %s',
                      ', '.join(unknown_benchmarks))
        return 1

    vm_util.SSHKeyGen()
    collector = SampleCollector()

    if FLAGS.static_vm_file:
        with open(FLAGS.static_vm_file) as fp:
            static_virtual_machine.StaticVirtualMachine.ReadStaticVirtualMachineFile(
                fp)

    if FLAGS.benchmark_config_pair:
        # Convert benchmark_config_pair into a {benchmark_name: file_name}
        # dictionary.
        tmp_dict = {}
        for config_pair in FLAGS.benchmark_config_pair:
            pair = config_pair.split(':')
            tmp_dict[pair[0]] = pair[1]
        FLAGS.benchmark_config_pair = tmp_dict

    try:
        benchmark_list = benchmark_sets.GetBenchmarksFromFlags()
        total_benchmarks = len(benchmark_list)
        if FLAGS.parallelism > 1:
            sequence_range = range(total_benchmarks, 0, -1)
            args = [((benchmark, collector, sequence_counter,
                      total_benchmarks), {})
                    for benchmark, sequence_counter in zip(
                        benchmark_list, sequence_range)]
            vm_util.RunThreaded(RunBenchmark,
                                args,
                                max_concurrent_threads=FLAGS.parallelism)
        else:
            sequence_range = range(1, total_benchmarks + 1)
            for benchmark, sequence_counter in zip(benchmark_list,
                                                   sequence_range):
                RunBenchmark(benchmark, collector, sequence_counter,
                             total_benchmarks)
    finally:
        if collector.samples:
            collector.PublishSamples()

    if FLAGS.run_stage not in [STAGE_ALL, STAGE_CLEANUP]:
        logging.info('To run again with this setup, please use --run_uri=%s',
                     FLAGS.run_uri)