def __init__(self): self.c = config.Configuration() keyFile = open('api_credentials.txt', 'r') self.key = keyFile.readline().rstrip() self.secret = keyFile.readline().rstrip() self.base_url = 'https://api.binance.com' self.trade_engine = Engine() self.performance = per.Performance()
# Put imports here import nearestneighbor import performance import random # Put code for performance analysis here def setup(size): global rand_lst rand_lst = [] for i in range(size): rand_lst.append((random.random(), random.random()), ) def code(): global rand_lst nearestneighbor.closest_2d(rand_lst) for i in range(0, 9): size = 100 * (2**i) p = performance.Performance(lambda: code(), lambda: setup(size), 5, '\n\nNearest Neighbor, size = ' + str(size)) p.evaluate() p.analyze()
import performance import ml_predict import argparse # code for testing the performance performance_test = performance.Performance() performance_test.run() parser = argparse.ArgumentParser(description="Predict a robot movements in next 2 seconds") parser.add_argument("--training", help = "file pattern to training data", default = "./inputs/training_data.txt") parser.add_argument("--input", help = "file pattern to input data", default = "./inputs/test01.txt") parser.add_argument("--output", help = "file pattern to output data", default = "./output.txt") # KNN ML predictor performs much better. Therefore, we use it for our final # output. args = parser.parse_args() predictor = ml_predict.MLPredictor(12, args.training) predictions = predictor.make_prediction(args.input)[0] print predictions # output the predictions with open(args.output, 'w') as f: for point in predictions: f.write(str(point[0])+','+str(point[1])+'\n')
] #编译关联文件 TestFile = ["timer/timer.c"] #待测试测试文件 #/************************************************************/ import sys sys.path.append(UnitPath + "python") import common import performance import coverage import index #处理命令行 common.HandleCmdArg() #执行代码 try: try: File = common.GenerateCmd(FilePath, UnitPath, GccFile) #组装编译命令 GccCmd = common.Gcc + " " + common.Args + " " + File + " -o test " + common.Libs common.Compile(GccCmd) # 编译文件 common.CreateDir() #生存文件夹 common.ExecuteTest() #执行程序 HtmlCover = coverage.Coverage(FilePath, UnitPath, common.ResultDir, common.Gcov, TestFile) #生成覆盖率文件 performance.Performance(UnitPath, common.ResultDir, common.Gprof) #生成性能文件 index.Index(UnitPath, common.ResultDir, HtmlCover) #生成index文件 except UserWarning: print "编译出错(complie was fault!)" finally: common.CleanUp(UnitPath) #清理现场