def test_save(): perfplot.save( "out.png", setup=np.random.rand, kernels=kernels, n_range=r, xlabel="len(a)", relative_to=0, )
def test_save(): perfplot.save( "out.png", setup=numpy.random.rand, kernels=kernels, n_range=r, xlabel="len(a)", title="mytest", ) return
def test_save(): def mytest(a): return numpy.c_[a, a] kernels = [mytest] r = [2**k for k in range(4)] perfplot.save( 'out.png', setup=numpy.random.rand, kernels=kernels, n_range=r, xlabel='len(a)', title='mytest' ) return
def test_save(): def mytest(a): return numpy.c_[a, a] kernels = [mytest] r = [2**k for k in range(4)] perfplot.save( "out.png", setup=numpy.random.rand, kernels=kernels, n_range=r, xlabel="len(a)", title="mytest", ) return
import perfplot import scipy.fftpack import pyfftw # numpy.use_fastnumpy = True perfplot.save( "rfftperf.png", transparent=False, setup=lambda n: (numpy.random.rand(int(n))), # or simply setup=numpy.random.rand kernels=[ lambda a: numpy.fft.rfft(a), lambda a: scipy.fftpack.rfft(a), lambda a: pyfftw.interfaces.numpy_fft.rfft(a), ], labels=["numpy", "scipy", "pyfftw"], n_range=[2000, 4000, 8000, 16000, 32000, 48000, 48000 * 2], xlabel="len(a)", # More optional arguments with their default values: title="Comparison between different rfft functions", # logx=False, # logy=False, equality_check=None, # set to None to disable "correctness" assertion # automatic_order=True, # colors=None, # target_time_per_measurement=1.0, # time_unit="auto", # set to one of ("s", "ms", "us", or "ns") to force plot units # relative_to=1, # plot the timings relative to one of the measurements )
""" def sample(n): _rb.memory.wait_priority_after_sampling = False return _rb.sample(n) return sample # ReplayBuffer.add perfplot.save(filename="ReplayBuffer_add.png", setup = env, time_unit="ms", kernels = [add_b(brb), add_r(rrb), add_c(crb), lambda e: rb.add(**e)], labels = ["OpenAI/Baselines","Ray/RLlib","Chainer/ChainerRL","cpprb"], n_range = [n for n in range(1,102,10)], xlabel = "Step size added at once", title = "Replay Buffer Add Speed", logx = False, logy = False, equality_check = None) # Fill Buffers for _ in range(buffer_size): o = np.random.rand(obs_shape) # [0,1) a = np.random.rand(act_shape) r = np.random.rand(1) d = np.random.randint(2) # [0,2) == 0 or 1 brb.add(obs_t=o,action=a,reward=r,obs_tp1=o,done=d)