コード例 #1
0
ファイル: jtj-test-script.py プロジェクト: jhkoivis/peri
def make_image_1():
    P = objs.PlatonicSpheresCollection(pos, rad)
    H = psfs.AnisotropicGaussian()
    I = ilms.LegendrePoly3D(order=(5, 3, 3), constval=1.0)
    B = ilms.Polynomial3D(order=(3, 1, 1), category='bkg', constval=0.01)
    C = GlobalScalar('offset', 0.0)

    return states.ImageState(im, [B, I, H, P, C], pad=16, model_as_data=True)
コード例 #2
0
ファイル: jtj-test-script.py プロジェクト: jhkoivis/peri
def make_image_0():
    P = objs.PlatonicSpheresCollection(pos, rad)
    H = psfs.AnisotropicGaussian()
    I = ilms.BarnesStreakLegPoly2P1D(npts=(20, 10), local_updates=True)
    B = GlobalScalar('bkg', 0.0)
    C = GlobalScalar('offset', 0.0)
    I.randomize_parameters()

    return states.ImageState(im, [B, I, H, P, C], pad=16, model_as_data=True)
コード例 #3
0
def makestate(im, pos, rad, slab=None, mem_level='hi'):
    """
    Workhorse for creating & optimizing states with an initial centroid
    guess.

    This is an example function that works for a particular microscope. For
    your own microscope, you'll need to change particulars such as the psf
    type and the orders of the background and illumination.

    Parameters
    ----------
        im : :class:`~peri.util.RawImage`
            A RawImage of the data.
        pos : [N,3] element numpy.ndarray.
            The initial guess for the N particle positions.
        rad : N element numpy.ndarray.
            The initial guess for the N particle radii.

        slab : :class:`peri.comp.objs.Slab` or None, optional
            If not None, a slab corresponding to that in the image. Default
            is None.
        mem_level : {'lo', 'med-lo', 'med', 'med-hi', 'hi'}, optional
            A valid memory level for the state to control the memory overhead
            at the expense of accuracy. Default is `'hi'`

    Returns
    -------
        :class:`~peri.states.ImageState`
            An ImageState with a linked z-scale, a ConfocalImageModel, and
            all the necessary components with orders at which are useful for
            my particular test case.
    """
    if slab is not None:
        o = comp.ComponentCollection(
                [
                    objs.PlatonicSpheresCollection(pos, rad, zscale=zscale),
                    slab
                ],
                category='obj'
            )
    else:
        o = objs.PlatonicSpheresCollection(pos, rad, zscale=zscale)

    p = exactpsf.FixedSSChebLinePSF()
    npts, iorder = _calc_ilm_order(im.get_image().shape)
    i = ilms.BarnesStreakLegPoly2P1D(npts=npts, zorder=iorder)
    b = ilms.LegendrePoly2P1D(order=(9 ,3, 5), category='bkg')
    c = comp.GlobalScalar('offset', 0.0)
    s = states.ImageState(im, [o, i, b, c, p])
    runner.link_zscale(s)
    if mem_level != 'hi':
        s.set_mem_level(mem_level)

    opt.do_levmarq(s, ['ilm-scale'], max_iter=1, run_length=6, max_mem=1e4)
    return s
コード例 #4
0
ファイル: init.py プロジェクト: jhkoivis/peri
def create_state(image, pos, rad, slab=None, sigma=0.05, conf=conf_simple):
    """
    Create a state from a blank image, set of pos and radii

    Parameters:
    -----------
    image : `peri.util.Image` object
        raw confocal image with which to compare.

    pos : initial conditions for positions (in raw image coordinates)
    rad : initial conditions for radii array (can be scalar)
    sigma : float, noise level

    slab : float
        z-position of the microscope slide in the image (pixel units)
    """
    # we accept radius as a scalar, so check if we need to expand it
    if not hasattr(rad, '__iter__'):
        rad = rad * np.ones(pos.shape[0])

    model = models.models[conf.get('model')]()

    # setup the components based on the configuration
    components = []
    for k, v in conf.get('comps', {}).iteritems():
        args = conf.get('args').get(k, {})
        comp = model.registry[k][v](**args)
        components.append(comp)

    sphs = objs.PlatonicSpheresCollection(pos, rad)
    if slab is not None:
        sphs = ComponentCollection([sphs, objs.Slab(zpos=slab + pad)],
                                   category='obj')
    components.append(sphs)

    s = states.ImageState(image, components, sigma=sigma)

    if isinstance(image, util.NullImage):
        s.model_to_data()
    return s
コード例 #5
0
ファイル: tutorial.py プロジェクト: yangyushi/peri
def create_img():
    """Creates an image, as a `peri.util.Image`, which is similar
    to the image in the tutorial"""
    # 1. particles + coverslip
    rad = 0.5 * np.random.randn(POS.shape[0]) + 4.5  # 4.5 +- 0.5 px particles
    part = objs.PlatonicSpheresCollection(POS, rad, zscale=0.89)
    slab = objs.Slab(zpos=4.92, angles=(-4.7e-3, -7.3e-4))
    objects = comp.ComponentCollection([part, slab], category='obj')

    # 2. psf, ilm
    p = exactpsf.FixedSSChebLinePSF(kfki=1.07, zslab=-29.3, alpha=1.17,
            n2n1=0.98, sigkf=-0.33, zscale=0.89, laser_wavelength=0.45)
    i = ilms.BarnesStreakLegPoly2P1D(npts=(16,10,8,4), zorder=8)
    b = ilms.LegendrePoly2P1D(order=(7,2,2), category='bkg')
    off = comp.GlobalScalar(name='offset', value=-2.11)
    mdl = models.ConfocalImageModel()
    st = states.ImageState(util.NullImage(shape=[48,64,64]),
            [objects, p, i, b, off], mdl=mdl, model_as_data=True)
    b.update(b.params, BKGVALS)
    i.update(i.params, ILMVALS)
    im = st.model + np.random.randn(*st.model.shape) * 0.03
    return util.Image(im)
コード例 #6
0
# particle_positions
n=100
# random_particles = np.c_[np.random.random(n), np.random.random(n),np.zeros(n)]*200.0
tile = util.Tile(200)
small_im = util.RawImage(imFile, tile=tile)

zpixel=1
xpixel=1
zscale=zpixel/xpixel

particle_radii = 8.0
particles = objs.PlatonicSpheresCollection(particle_positions, particle_radii, zscale=zscale)

objects = comp.comp.ComponentCollection([particles], category='obj')


background = comp.ilms.LegendrePoly2P1D(order=(4,2,2), category='bkg')
illumination = comp.ilms.BarnesStreakLegPoly2P1D(npts=(4, 2, 2))
offset = comp.GlobalScalar(name='offset', value=0.)
point_spread_function = comp.exactpsf.ChebyshevLineScanConfocalPSF(pxsize=xpixel)
model = models.ConfocalDyedParticlesModel()
st = states.ImageState(small_im, [objects, illumination, background, point_spread_function], mdl=model)
st.update('zscale', zscale)
savefile = "/Volumes/PhD/expDesign/test/"+datetime.now().strftime("%Y%m%d-%H%M%S") + "_unoptimized"
runner.link_zscale(st)
runner.optimize_from_initial(st)
savefile = "/Volumes/PhD/expDesign/test/"+datetime.now().strftime("%Y%m%d-%H%M%S") + "_inital_optimized"
states.save(st,savefile)

# new_st = runner.get_particles_featuring(8)
コード例 #7
0
def locate_spheres(image,
                   feature_rad,
                   dofilter=False,
                   order=(3, 3, 3),
                   trim_edge=True,
                   **kwargs):
    """
    Get an initial featuring of sphere positions in an image.

    Parameters
    -----------
    image : :class:`peri.util.Image` object
        Image object which defines the image file as well as the region.

    feature_rad : float
        Radius of objects to find, in pixels. This is a featuring radius
        and not a real radius, so a better value is frequently smaller
        than the real radius (half the actual radius is good). If ``use_tp``
        is True, then the twice ``feature_rad`` is passed as trackpy's
        ``diameter`` keyword.

    dofilter : boolean, optional
        Whether to remove the background before featuring. Doing so can
        often greatly increase the success of initial featuring and
        decrease later optimization time. Filtering functions by fitting
        the image to a low-order polynomial and featuring the residuals.
        In doing so, this will change the mean intensity of the featured
        image and hence the good value of ``minmass`` will change when
        ``dofilter`` is True. Default is False.

    order : 3-element tuple, optional
        If `dofilter`, the 2+1D Leg Poly approximation to the background
        illumination field. Default is (3,3,3).

    Other Parameters
    ----------------
    invert : boolean, optional
        Whether to invert the image for featuring. Set to True if the
        image is dark particles on a bright background. Default is True
    minmass : Float or None, optional
        The minimum mass/masscut of a particle. Default is None, which
        calculates internally.
    use_tp : Bool, optional
        Whether or not to use trackpy. Default is False, since trackpy
        cuts out particles at the edge.

    Returns
    --------
    positions : np.ndarray [N,3]
        Positions of the particles in order (z,y,x) in image pixel units.

    Notes
    -----
    Optionally filters the image by fitting the image I(x,y,z) to a
    polynomial, then subtracts this fitted intensity variation and uses
    centroid methods to find the particles.
    """
    # We just want a smoothed field model of the image so that the residuals
    # are simply the particles without other complications
    m = models.SmoothFieldModel()
    I = ilms.LegendrePoly2P1D(order=order, constval=image.get_image().mean())
    s = states.ImageState(image, [I], pad=0, mdl=m)
    if dofilter:
        opt.do_levmarq(s, s.params)
    pos = addsub.feature_guess(s, feature_rad, trim_edge=trim_edge,
                               **kwargs)[0]
    return pos
コード例 #8
0
from peri import util
from peri.comp import ilms, objs, exactpsf, comp
import peri.opt.optimize as opt

from peri.viz.interaction import *  # OrthoViewer & OrthoManipulator

# We start with featuring just a background image
# This image was taken with no sample, i.e. we're just measuring dark current
im_bkg = util.RawImage('./bkg_test.tif')  # located in the scripts folder

# First we try with just a constant background
bkg_const = ilms.LegendrePoly3D(order=(1, 1, 1))
# Since we're just fitting a blank image, we don't need a psf at first, so we
# use the simplest model for the state: a SmoothFieldModel, which has just
# returns the illumination field:
st = states.ImageState(im_bkg, [bkg_const], mdl=models.SmoothFieldModel())
opt.do_levmarq(st, st.params)


# Since there's not a whole lot to see in this image, looking at the
# OrthoViewer or OrthoManipulator doesn't provide a lot of insight. Instead,
# we look at plots of the residuals along certain axes. We'll do this several
# times so I'll make a function:
def plot_averaged_residuals(st):
    plt.figure(figsize=[15, 6])
    for i in xrange(3):
        plt.subplot(1, 3, 1 + i)
        mean_ax = tuple({0, 1, 2} - {i})  # which 2 directions to average over
        plt.plot(st.residuals.mean(axis=mean_ax))
        plt.title('{}-averaged'.format(['$xy$', '$xz$', '$yz$'][i]),
                  fontsize='large')
コード例 #9
0
ファイル: create_state.py プロジェクト: yangyushi/peri
from peri import states, util, models
from peri.comp import psfs, objs, ilms, GlobalScalar, ComponentCollection
from peri.test import nbody

import peri.opt.optimize as opt
import peri.opt.addsubtract as addsub

im = util.NullImage(shape=(32, ) * 3)
pos, rad, tile = nbody.create_configuration(3, im.tile)

P = ComponentCollection(
    [objs.PlatonicSpheresCollection(pos, rad),
     objs.Slab(2)], category='obj')

H = psfs.AnisotropicGaussian()
I = ilms.BarnesStreakLegPoly2P1D(npts=(25, 13, 3),
                                 zorder=2,
                                 local_updates=False)
B = ilms.LegendrePoly2P1D(order=(3, 1, 1), category='bkg', constval=0.01)
C = GlobalScalar('offset', 0.0)
I.randomize_parameters()

s = states.ImageState(im, [B, I, H, P, C], pad=16, model_as_data=True)