コード例 #1
0
def table(s, datas, names, vary_func):
    p0 = s.obj.pos.copy()
    r0 = s.obj.rad.copy()

    slicer = np.s_[s.image[s.inner].shape[0] / 2]
    model_image = s.image[s.inner][slicer].copy()

    results = [0] * (len(names) + 1)
    results[0] = ('Refernce', model_image, p0, r0)

    filename = tempfile.NamedTemporaryFile().name
    states.save(s, filename=filename)

    for i, (name, data) in enumerate(zip(names, datas)):
        print i, name, data
        state = states.load(filename)

        vary_func(state, data)
        state.reset()

        optimize(state)

        results[i + 1] = (name, state.get_difference_image()[slicer].copy(),
                          state.obj.pos.copy(), state.obj.rad.copy())

    os.remove(filename)
    return results
コード例 #2
0
ファイル: runner.py プロジェクト: jhkoivis/peri
def _translate_particles(s,
                         max_mem=1e9,
                         desc='',
                         min_rad='calc',
                         max_rad='calc',
                         invert=True,
                         rz_order=0,
                         do_polish=True):
    """
    Workhorse for translating particles. See get_particles_featuring for docs.
    """
    RLOG.info('Translate Particles:')
    opt.burn(s,
             mode='do-particles',
             n_loop=4,
             fractol=0.1,
             desc=desc + 'translate-particles',
             max_mem=max_mem,
             include_rad=False,
             dowarn=False)
    opt.burn(s,
             mode='do-particles',
             n_loop=4,
             fractol=0.05,
             desc=desc + 'translate-particles',
             max_mem=max_mem,
             include_rad=True,
             dowarn=False)

    RLOG.info('Start add-subtract')
    addsub.add_subtract(s,
                        tries=30,
                        min_rad=min_rad,
                        max_rad=max_rad,
                        invert=invert)
    states.save(s, desc=desc + 'translate-addsub')

    if do_polish:
        RLOG.info('Final Burn:')
        opt.burn(s,
                 mode='burn',
                 n_loop=3,
                 fractol=3e-4,
                 desc=desc + 'addsub-burn',
                 max_mem=max_mem,
                 rz_order=rz_order,
                 dowarn=False)
        RLOG.info('Final Polish:')
        d = opt.burn(s,
                     mode='polish',
                     n_loop=4,
                     fractol=3e-4,
                     desc=desc + 'addsub-polish',
                     max_mem=max_mem,
                     rz_order=rz_order,
                     dowarn=False)
        if not d['converged']:
            RLOG.warn('Optimization did not converge; consider re-running')
コード例 #3
0
ファイル: sample.py プロジェクト: jhkoivis/peri
def do_samples(s,
               sweeps,
               burn,
               stepout=0.1,
               save_period=-1,
               prefix='peri',
               save_name=None,
               sigma=True,
               pos=True,
               quiet=False,
               postfix=None):
    h = []
    ll = []
    if not save_name:
        with tempfile.NamedTemporaryFile(suffix='.peri-state.pkl',
                                         prefix=prefix) as f:
            save_name = f.name

    for i in xrange(sweeps):
        if save_period > 0 and i % save_period == 0:
            with open(save_name, 'w') as tfile:
                pickle.dump([s, h, ll], tfile)

        if postfix is not None:
            states.save(s, desc=postfix, extra=[np.array(h), np.array(ll)])

        if not quiet:
            print '{:=^79}'.format(' Sweep ' + str(i) + ' ')

        #sample_particles(s, stepout=stepout)
        if pos:
            sample_particle_pos(s, stepout=stepout, quiet=quiet)
        sample_particle_rad(s, stepout=stepout, quiet=quiet)
        sample_block(s, 'psf', stepout=stepout, quiet=quiet)
        sample_block(s, 'ilm', stepout=stepout, quiet=quiet)
        sample_block(s, 'off', stepout=stepout, quiet=quiet)
        sample_block(s, 'zscale', stepout=stepout, quiet=quiet)

        if s.bkg:
            sample_block(s, 'bkg', stepout=stepout, quiet=quiet)

        if s.slab:
            sample_block(s, 'slab', stepout=stepout, quiet=quiet)

        if sigma and s.nlogs:
            sample_block(s, 'sigma', stepout=stepout / 10, quiet=quiet)

        if i >= burn:
            h.append(s.state.copy())
            ll.append(s.loglikelihood)

    if save_period > 0 and save_name:
        os.remove(save_name)

    h = np.array(h)
    ll = np.array(ll)
    return h, ll
コード例 #4
0
ファイル: sample.py プロジェクト: jhkoivis/peri
def do_blocks(s, blocks, sweeps, burn, stepout=0.1, postfix=None, quiet=False):
    h, ll = [], []

    for i in xrange(sweeps):
        if postfix is not None:
            states.save(s, desc=postfix, extra=[np.array(h), np.array(ll)])

        if not quiet:
            print '{:=^79}'.format(' Sweep ' + str(i) + ' ')

        sample_state(s, blocks, stepout=stepout, N=1, doprint=~quiet)

        if i >= burn:
            h.append(s.state.copy())
            ll.append(s.loglikelihood)

    h = np.array(h)
    ll = np.array(ll)
    return h, ll
コード例 #5
0
# particle_positions
n=100
# random_particles = np.c_[np.random.random(n), np.random.random(n),np.zeros(n)]*200.0
tile = util.Tile(200)
small_im = util.RawImage(imFile, tile=tile)

zpixel=1
xpixel=1
zscale=zpixel/xpixel

particle_radii = 8.0
particles = objs.PlatonicSpheresCollection(particle_positions, particle_radii, zscale=zscale)

objects = comp.comp.ComponentCollection([particles], category='obj')


background = comp.ilms.LegendrePoly2P1D(order=(4,2,2), category='bkg')
illumination = comp.ilms.BarnesStreakLegPoly2P1D(npts=(4, 2, 2))
offset = comp.GlobalScalar(name='offset', value=0.)
point_spread_function = comp.exactpsf.ChebyshevLineScanConfocalPSF(pxsize=xpixel)
model = models.ConfocalDyedParticlesModel()
st = states.ImageState(small_im, [objects, illumination, background, point_spread_function], mdl=model)
st.update('zscale', zscale)
savefile = "/Volumes/PhD/expDesign/test/"+datetime.now().strftime("%Y%m%d-%H%M%S") + "_unoptimized"
runner.link_zscale(st)
runner.optimize_from_initial(st)
savefile = "/Volumes/PhD/expDesign/test/"+datetime.now().strftime("%Y%m%d-%H%M%S") + "_inital_optimized"
states.save(st,savefile)

# new_st = runner.get_particles_featuring(8)
コード例 #6
0
def optimize_from_initial(s,
                          max_mem=1e9,
                          invert='guess',
                          desc='',
                          rz_order=3,
                          min_rad=None,
                          max_rad=None):
    """
    Optimizes a state from an initial set of positions and radii, without
    any known microscope parameters.

    Parameters
    ----------
        s : :class:`peri.states.ImageState`
            The state to optimize. It is modified internally and returned.
        max_mem : Numeric, optional
            The maximum memory for the optimizer to use. Default is 1e9 (bytes)
        invert : Bool or `'guess'`, optional
            Set to True if the image is dark particles on a bright
            background, False otherwise. Used for add-subtract. The
            default is to guess from the state's current particles.
        desc : String, optional
            An additional description to infix for periodic saving along the
            way. Default is the null string ``''``.
        rz_order : int, optional
            ``rz_order`` as passed to opt.burn. Default is 3
        min_rad : Float or None, optional
            The minimum radius to identify a particles as bad, as passed to
            add-subtract. Default is None, which picks half the median radii.
            If your sample is not monodisperse you should pick a different
            value.
        max_rad : Float or None, optional
            The maximum radius to identify a particles as bad, as passed to
            add-subtract. Default is None, which picks 1.5x the median radii.
            If your sample is not monodisperse you should pick a different
            value.

    Returns
    -------
        s : :class:`peri.states.ImageState`
            The optimized state, which is the same as the input ``s`` but
            modified in-place.
    """
    RLOG.info('Initial burn:')
    if desc is not None:
        desc_burn = desc + 'initial-burn'
        desc_polish = desc + 'addsub-polish'
    else:
        desc_burn, desc_polish = [None] * 2
    opt.burn(s,
             mode='burn',
             n_loop=3,
             fractol=0.1,
             desc=desc_burn,
             max_mem=max_mem,
             include_rad=False,
             dowarn=False)
    opt.burn(s,
             mode='burn',
             n_loop=3,
             fractol=0.1,
             desc=desc_burn,
             max_mem=max_mem,
             include_rad=True,
             dowarn=False)

    RLOG.info('Start add-subtract')
    rad = s.obj_get_radii()
    if min_rad is None:
        min_rad = 0.5 * np.median(rad)
    if max_rad is None:
        max_rad = 1.5 * np.median(rad)
    addsub.add_subtract(s,
                        tries=30,
                        min_rad=min_rad,
                        max_rad=max_rad,
                        invert=invert)
    if desc is not None:
        states.save(s, desc=desc + 'initial-addsub')

    RLOG.info('Final polish:')
    d = opt.burn(s,
                 mode='polish',
                 n_loop=8,
                 fractol=3e-4,
                 desc=desc_polish,
                 max_mem=max_mem,
                 rz_order=rz_order,
                 dowarn=False)
    if not d['converged']:
        RLOG.warn('Optimization did not converge; consider re-running')
    return s
コード例 #7
0
def feature_from_pos_rad(statemaker,
                         pos,
                         rad,
                         im_name=None,
                         tile=None,
                         desc='',
                         use_full_path=False,
                         statemaker_kwargs={},
                         **kwargs):
    """
    Gets a completely-optimized state from an image and an initial guess of
    particle positions and radii.

    The state is periodically saved during optimization, with different
    filename for different stages of the optimization. The user can select
    the image.

    Parameters
    ----------
        statemaker : Function
            A statemaker function. Given arguments `im` (a
            :class:`~peri.util.Image`), `pos` (numpy.ndarray), `rad` (ndarray),
            and any additional `statemaker_kwargs`, must return a
            :class:`~peri.states.ImageState`.  There is an example function in
            scripts/statemaker_example.py
        pos : [N,3] element numpy.ndarray.
            The initial guess for the N particle positions.
        rad : N element numpy.ndarray.
            The initial guess for the N particle radii.
        im_name : string or None, optional
            The filename of the image to feature. Default is None, in which
            the user selects the image.
        tile : :class:`peri.util.Tile`, optional
            A tile of the sub-region of the image to feature. Default is
            None, i.e. entire image.
        desc : String, optional
            A description to be inserted in saved state. The save name will
            be, e.g., '0.tif-peri-' + desc + 'initial-burn.pkl'. Default is ''
        use_full_path : Bool, optional
            Set to True to use the full path name for the image. Default
            is False.
        statemaker_kwargs : Dict, optional
            kwargs-like dict of any additional keyword arguments to pass to
            the statemaker function. Default is ``{}``.

    Other Parameters
    ----------------
        max_mem : Numeric
            The maximum additional memory to use for the optimizers, as
            passed to optimize.burn. Default is 1e9.
        min_rad : Float, optional
            The minimum particle radius, as passed to addsubtract.add_subtract.
            Particles with a fitted radius smaller than this are identified
            as fake and removed. Default is 0.5 * actual_rad.
        max_rad : Float, optional
            The maximum particle radius, as passed to addsubtract.add_subtract.
            Particles with a fitted radius larger than this are identified
            as fake and removed. Default is 1.5 * actual_rad, however you
            may find better results if you make this more stringent.
        invert : {'guess', True, False}
            Whether to invert the image for featuring, as passed to
            addsubtract.add_subtract. Default is to guess from the
            current state's particle positions.
        rz_order : int, optional
            If nonzero, the order of an additional augmented rscl(z)
            parameter for optimization. Default is 0; i.e. no rscl(z)
            optimization.
        zscale : Float, optional
            The zscale of the image. Default is 1.0

    Returns
    -------
        s : :class:`peri.states.ImageState`
            The optimized state.

    See Also
    --------
        get_initial_featuring   : Features an image from scratch, using
            centroid methods as initial particle locations.

        get_particle_featuring  : Using a previous state's globals and
            positions as an initial guess, completely optimizes a state.

        translate_featuring     : Use a previous state's globals and
            centroids methods for an initial particle guess, completely
            optimizes a state.

    Notes
    -----
    The ``Other Parameters`` are passed to _optimize_from_centroid.
    Proceeds by centroid-featuring the image for an initial guess of
    particle positions, then optimizing the globals + positions until
    termination as called in _optimize_from_centroid.
    """
    if np.size(pos) == 0:
        raise ValueError('`pos` is an empty array.')
    elif np.shape(pos)[1] != 3:
        raise ValueError('`pos` must be an [N,3] element numpy.ndarray.')
    _, im_name = _pick_state_im_name('', im_name, use_full_path=use_full_path)
    im = util.RawImage(im_name, tile=tile)
    s = statemaker(im, pos, rad, **statemaker_kwargs)
    RLOG.info('State Created.')
    if desc is not None:
        states.save(s, desc=desc + 'initial')
    optimize_from_initial(s, desc=desc, **kwargs)
    return s
コード例 #8
0
def get_initial_featuring(statemaker,
                          feature_rad,
                          actual_rad=None,
                          im_name=None,
                          tile=None,
                          invert=True,
                          desc='',
                          use_full_path=False,
                          featuring_params={},
                          statemaker_kwargs={},
                          **kwargs):
    """
    Completely optimizes a state from an image of roughly monodisperse
    particles.

    The user can interactively select the image. The state is periodically
    saved during optimization, with different filename for different stages
    of the optimization.

    Parameters
    ----------
        statemaker : Function
            A statemaker function. Given arguments `im` (a
            :class:`~peri.util.Image`), `pos` (numpy.ndarray), `rad` (ndarray),
            and any additional `statemaker_kwargs`, must return a
            :class:`~peri.states.ImageState`.  There is an example function in
            scripts/statemaker_example.py
        feature_rad : Int, odd
            The particle radius for featuring, as passed to locate_spheres.
        actual_rad : Float, optional
            The actual radius of the particles. Default is feature_rad
        im_name : string, optional
            The file name of the image to load. If not set, it is selected
            interactively through Tk.
        tile : :class:`peri.util.Tile`, optional
            The tile of the raw image to be analyzed. Default is None, the
            entire image.
        invert : Bool, optional
            Whether to invert the image for featuring, as passed to trackpy.
            Default is True.
        desc : String, optional
            A description to be inserted in saved state. The save name will
            be, e.g., '0.tif-peri-' + desc + 'initial-burn.pkl'. Default is ''
        use_full_path : Bool, optional
            Set to True to use the full path name for the image. Default
            is False.
        featuring_params : Dict, optional
            kwargs-like dict of any additional keyword arguments to pass to
            ``get_initial_featuring``, such as ``'use_tp'`` or ``'minmass'``.
            Default is ``{}``.
        statemaker_kwargs : Dict, optional
            kwargs-like dict of any additional keyword arguments to pass to
            the statemaker function. Default is ``{}``.

    Other Parameters
    ----------------
        max_mem : Numeric
            The maximum additional memory to use for the optimizers, as
            passed to optimize.burn. Default is 1e9.
        min_rad : Float, optional
            The minimum particle radius, as passed to addsubtract.add_subtract.
            Particles with a fitted radius smaller than this are identified
            as fake and removed. Default is 0.5 * actual_rad.
        max_rad : Float, optional
            The maximum particle radius, as passed to addsubtract.add_subtract.
            Particles with a fitted radius larger than this are identified
            as fake and removed. Default is 1.5 * actual_rad, however you
            may find better results if you make this more stringent.
        rz_order : int, optional
            If nonzero, the order of an additional augmented rscl(z)
            parameter for optimization. Default is 0; i.e. no rscl(z)
            optimization.
        zscale : Float, optional
            The zscale of the image. Default is 1.0

    Returns
    -------
        s : :class:`peri.states.ImageState`
            The optimized state.

    See Also
    --------
        feature_from_pos_rad    : Using a previous state's globals and
            user-provided positions and radii as an initial guess,
            completely optimizes a state.

        get_particle_featuring  : Using a previous state's globals and
            positions as an initial guess, completely optimizes a state.

        translate_featuring     : Use a previous state's globals and
            centroids methods for an initial particle guess, completely
            optimizes a state.

    Notes
    -----
    Proceeds by centroid-featuring the image for an initial guess of
    particle positions, then optimizing the globals + positions until
    termination as called in _optimize_from_centroid.
    The ``Other Parameters`` are passed to _optimize_from_centroid.
    """
    if actual_rad is None:
        actual_rad = feature_rad

    _, im_name = _pick_state_im_name('', im_name, use_full_path=use_full_path)
    im = util.RawImage(im_name, tile=tile)

    pos = locate_spheres(im, feature_rad, invert=invert, **featuring_params)
    if np.size(pos) == 0:
        msg = 'No particles found. Try using a smaller `feature_rad`.'
        raise ValueError(msg)

    rad = np.ones(pos.shape[0], dtype='float') * actual_rad
    s = statemaker(im, pos, rad, **statemaker_kwargs)
    RLOG.info('State Created.')
    if desc is not None:
        states.save(s, desc=desc + 'initial')
    optimize_from_initial(s, invert=invert, desc=desc, **kwargs)
    return s