def fromJSONDict(cls, json): return cls(segment_start = cond_get(json, 'segment_start'), labels = cond_get(json, 'labels'), filename = cond_get(json, 'filename'), learning = cond_get(json, 'learning'), window_size = cond_get(json, 'window_size'), data_index = cond_get(json, 'data_index'), tau = cond_get(json, 'tau'))
def fromJSONDict(cls, json): return cls(None, config=Configuration.fromJSONDict(json['config']), kernel_module=cond_get(json, 'kernel_module'), kernel_arg=cond_get(json, 'kernel_arg'), distances_module=cond_get(json, 'distances_module'), distances_arg=cond_get(json, 'distances_arg'), learning_module=cond_get(json, 'learning_module'), learning_arg=cond_get(json, 'learning_arg'), partitions=cond_get(json, 'partitions'))
def ArgsIter(args_l): for args in args_l : # make all the variable entries lists if they aren't already iterargs = dict(map(lambda x: (x, cond_get_list(args,x)), ['segment_size', 'segment_stride', 'window_size', 'window_stride', \ 'max_simplices', 'persistence_epsilon', 'post_process_arg'])) if not ('data_index' in args.keys()) or args['data_index'] == None : iterargs['data_index'] = [None] elif not isinstance(args['data_index'], list) : iterargs['data_index'] = [args['data_index']] else : if isinstance(args['data_index'][0], list) : iterargs['data_index'] = args['data_index'] else : iterargs['data_index'] = [args['data_index']] for (data_index, segment_size, segment_stride, window_size, window_stride, max_simplices, persistence_epsilon, post_process_arg) in \ itertools.product(iterargs['data_index'], iterargs['segment_size'], iterargs['segment_stride'], iterargs['window_size'], iterargs['window_stride'], iterargs['max_simplices'], iterargs['persistence_epsilon'], iterargs['post_process_arg']) : yield Configuration(max_simplices, persistence_epsilon, segment_stride, segment_size, window_size, window_stride, cond_get(args,'kernel_scale'), cond_get(args,'kernel_gamma'), cond_get(args,'invariant_epsilon'), cond_get(args, 'data_file'), data_index, cond_get(args,'label_index'), cond_get(args,'out_directory'), cond_get(args,'threads'), cond_get(args,'learning_split'), cond_get(args,'learning_iterations'), cond_get(args,'learning_C'), cond_get(args,'cv_iterations'), cond_get(args,'persistence_degree'), cond_get(args,'reevaluate'), cond_get(args,'data_type'), cond_get(args,'post_process'), post_process_arg, cond_get(args,'stop_after'), cond_get(args,'status'))
def fromJSONDict(cls, json) : return cls( cond_get(json,'max_simplices'), cond_get(json,'persistence_epsilon'), cond_get(json,'segment_stride'), cond_get(json,'segment_size'), cond_get(json,'window_size'), cond_get(json,'window_stride'), cond_get(json,'kernel_scale'), cond_get(json,'kernel_gamma'), cond_get(json,'invariant_epsilon'), cond_get(json,'data_file'), cond_get(json,'data_index'), cond_get(json,'label_index'), cond_get(json,'out_directory'), cond_get(json,'threads'), cond_get(json,'learning_split'), cond_get(json,'learning_iterations'), cond_get(json,'learning_C'), cond_get(json,'cv_iterations'), cond_get(json,'persistence_degree'), cond_get(json,'reevaluate'), cond_get(json,'data_type'), cond_get(json,'post_process'), cond_get(json,'post_process_arg'), cond_get(json,'stop_after'), cond_get(json,'status'))
def fromJSONDict(cls, json): return cls(cond_get(json,'min'), cond_get(json,'mean'), cond_get(json,'max'), cond_get(json,'std'))
def ArgsIter(args_l): for args in args_l: # make all the variable entries lists if they aren't already iterargs = dict(map(lambda x: (x, cond_get_list(args,x)), ['segment_size', 'segment_stride', 'window_size', 'window_stride', \ 'max_simplices', 'persistence_epsilon', 'post_process_arg'])) if not ('data_index' in args.keys()) or args['data_index'] == None: iterargs['data_index'] = [None] elif not isinstance(args['data_index'], list): iterargs['data_index'] = [args['data_index']] else: if isinstance(args['data_index'][0], list): iterargs['data_index'] = args['data_index'] else: iterargs['data_index'] = [args['data_index']] for (data_index, segment_size, segment_stride, window_size, window_stride, max_simplices, persistence_epsilon, post_process_arg) in \ itertools.product(iterargs['data_index'], iterargs['segment_size'], iterargs['segment_stride'], iterargs['window_size'], iterargs['window_stride'], iterargs['max_simplices'], iterargs['persistence_epsilon'], iterargs['post_process_arg']) : yield Configuration(max_simplices, persistence_epsilon, segment_stride, segment_size, window_size, window_stride, cond_get(args, 'kernel_scale'), cond_get(args, 'kernel_gamma'), cond_get(args, 'invariant_epsilon'), cond_get(args, 'data_file'), data_index, cond_get(args, 'label_index'), cond_get(args, 'out_directory'), cond_get(args, 'threads'), cond_get(args, 'learning_split'), cond_get(args, 'learning_iterations'), cond_get(args, 'learning_C'), cond_get(args, 'cv_iterations'), cond_get(args, 'persistence_degree'), cond_get(args, 'reevaluate'), cond_get(args, 'data_type'), cond_get(args, 'post_process'), post_process_arg, cond_get(args, 'stop_after'), cond_get(args, 'status'))
def fromJSONDict(cls, json): return cls(cond_get(json, 'max_simplices'), cond_get(json, 'persistence_epsilon'), cond_get(json, 'segment_stride'), cond_get(json, 'segment_size'), cond_get(json, 'window_size'), cond_get(json, 'window_stride'), cond_get(json, 'kernel_scale'), cond_get(json, 'kernel_gamma'), cond_get(json, 'invariant_epsilon'), cond_get(json, 'data_file'), cond_get(json, 'data_index'), cond_get(json, 'label_index'), cond_get(json, 'out_directory'), cond_get(json, 'threads'), cond_get(json, 'learning_split'), cond_get(json, 'learning_iterations'), cond_get(json, 'learning_C'), cond_get(json, 'cv_iterations'), cond_get(json, 'persistence_degree'), cond_get(json, 'reevaluate'), cond_get(json, 'data_type'), cond_get(json, 'post_process'), cond_get(json, 'post_process_arg'), cond_get(json, 'stop_after'), cond_get(json, 'status'))
def fromJSONDict(cls, json): return cls(train=cond_get(json, 'train'), test=cond_get(json, 'test'), state=cond_get(json, 'state'))
def fromJSONDict(cls, json): return cls(Configuration.fromJSONDict(json['config']), cond_get_obj_list(json, 'results', LearningResult), cond_get(json, 'kernel_files'))
def fromJSONDict(cls, json) : return cls(cond_get(json, 'seed'), json['train_labels'], json['test_labels'], json['test_results'], cond_get(json, 'mkl_weights'))
def fromJSONDict(cls, json): return cls(train = cond_get(json, 'train'), test = cond_get(json, 'test'), state = cond_get(json, 'state'))
def fromJSONDict(cls, json): return cls(SegmentInfo.fromJSONDict(json['segment_info']) if 'segment_info' in json else None, points=cond_get(json, 'points'))