コード例 #1
0
ファイル: getters.py プロジェクト: xgrzyb00/Bachelors-thesis
def get_single_profile_info(pcs, minor_version, profile_source):
    """Function for loading single performance profile info
    :param PCS pcs: object with performance control system wrapper
    :param str minor_version: commit to which the profiles belongs
    :param str profile_source: name of the performance profile
    :return: dictionary containing performance profile info
    """

    try:
        profiles_objs = commands.get_minor_version_profiles(pcs, minor_version);
        for num, profile_obj in enumerate(profiles_objs):
            if (profile_obj.source == profile_source):
                perf_profile = profile.load_profile_from_file(profile_obj.realpath, is_raw_profile=False)
                options = [o for o in query.all_resource_fields_of(perf_profile)]
                numerical = [o for o in query.all_numerical_resource_fields_of(perf_profile)]
                dataframe = convert.resources_to_pandas_dataframe(perf_profile)

                for option in options:
                    dataframe = dataframe[pandas.notnull(dataframe[option])]
                
                dataframe = dataframe.astype(str)
                resource_values = dataframe.to_dict(orient='records')

                formatted = formatter.format_single_profile_info(profile_obj, minor_version, options, numerical, resource_values)

                return formatted, json.dumps({'profile' : formatted})

        profiles_objs = commands.get_untracked_profiles(pcs);
        for num, profile_obj in enumerate(profiles_objs):
            if (profile_obj.source == profile_source):
                perf_profile = profile.load_profile_from_file(profile_obj.realpath, is_raw_profile=True)
                options = [o for o in query.all_resource_fields_of(perf_profile)]
                numerical = [o for o in query.all_numerical_resource_fields_of(perf_profile)]
                dataframe = convert.resources_to_pandas_dataframe(perf_profile)
                
                for option in options:
                    dataframe = dataframe[pandas.notnull(dataframe[option])]

                dataframe = dataframe.astype(str)
                resource_values = dataframe.to_dict(orient='records')

                formatted = formatter.format_single_profile_info(profile_obj, minor_version, options, numerical, resource_values)
                
                return formatted, json.dumps({'profile' : formatted})

        return create_response('Something went wrong', 404)

    except Exception as e:
        eprint(e)
        return create_response(e, 404)
コード例 #2
0
ファイル: factory.py プロジェクト: xlisci02/perun
def generate_plot_data_slices(profile):
    """ Generates data slices for plotting resources and models. The resources are split by unique
        uids, models are sliced into parts by uid and interval.

    :param dict profile: loaded perun profile
    :returns generator: generator: resources and models slices of unique uid as pair
        (data_slice(pandas.DataFrame), uid_models(list))
    """
    # Get resources for scatter plot points and models for curves
    resource_table = convert.resources_to_pandas_dataframe(profile)
    models = list(map(itemgetter(1), query.all_models_of(profile)))
    # Get unique uids from profile, each uid (and optionally interval) will have separate graph
    uids = map(convert.flatten,
               query.unique_resource_values_of(profile, 'uid'))

    # Process each uid data
    for uid_slice, uid_models in slice_resources_by_uid(
            resource_table, models, uids):
        # Slice the uid models according to different intervals (each interval is plotted
        # separately as it improves readability)
        if uid_models:
            for interval_models in slice_models_by_interval(uid_models):
                yield uid_slice, interval_models
        else:
            # There are no models to plot
            yield uid_slice, []
コード例 #3
0
def get_averages(profile):
    """Retrieves the averages of all amounts grouped by the uid

    :param dict profile: dictionary representation of profile
    :returns: dictionary with averages for all uids
    """
    data_frame = convert.resources_to_pandas_dataframe(profile)
    return data_frame.groupby('uid').mean().to_dict()['amount']
コード例 #4
0
def create_from_params(profile,
                       func,
                       of_key,
                       through_key,
                       by_key,
                       stacked,
                       accumulate,
                       x_axis_label,
                       y_axis_label,
                       graph_title,
                       graph_width=800):
    """Creates Flow graph according to the given parameters.

    Takes the input profile, converts it first to pandas.DataFrame. Then the data are grouped
    according to the 'by_key' and then grouped again for each 'through' key. For this atomic
    groups aggregation function is used.

    For each computed data, we output the area and points.

    Arguments:
        profile(dict): dictionary with measured data
        func(str): function that will be used for aggregation of the data
        of_key(str): key that specifies which fields of the resource entry will be used as data
        through_key(str): key that specifies fields of the resource that will be on the x axis
        by_key(str): key that specifies values for which graphs will be outputed
        stacked(bool): true if the values of the graphs should be stacked on each other
          -> this shows the overall values
        accumulate(bool): true if the values from previous x values should be accumulated
        x_axis_label(str): label on the x axis
        y_axis_label(str): label on the y axis
        graph_title(str): name of the graph
        graph_width(int): width of the created bokeh graph

    Returns:
        charts.Area: flow graph according to the params
    """
    # Convert profile to pandas data grid
    data_frame = convert.resources_to_pandas_dataframe(profile)
    data_source = construct_data_source_from(data_frame, func, of_key, by_key,
                                             through_key, accumulate)

    # Obtain colours, which will be sorted in reverse
    key_colours = bokeh_helpers.get_unique_colours_for_(
        data_frame, by_key, sort_color_style=bokeh_helpers.ColourSort.Reverse)

    # Construct the area chart
    area_chart = charts.Area(data_source, stack=stacked, color=key_colours)

    # Configure graph and return it
    bokeh_helpers.configure_graph(area_chart, profile, func, graph_title,
                                  x_axis_label, y_axis_label, graph_width)
    configure_area_chart(area_chart, data_frame, data_source, through_key,
                         stacked)

    return area_chart
コード例 #5
0
ファイル: factory.py プロジェクト: petr-muller/perun
def create_from_params(profile,
                       func,
                       of_key,
                       per_key,
                       by_key,
                       cummulation_type,
                       x_axis_label,
                       y_axis_label,
                       graph_title,
                       graph_width=800):
    """Creates Bar graph according to the given parameters.

    Takes the input profile, convert it to pandas.DataFrame. Then the data according to 'of_key'
    parameter are used as values and are output by aggregation function of 'func' depending on
    values of 'per_key'. Values are further stacked by 'by_key' key and cummulated according to the
    type.

    Arguments:
        profile(dict): dictionary with measured data
        func(str): function that will be used for aggregation of the data
        of_key(str): key that specifies which fields of the resource entry will be used as data
        per_key(str): key that specifies fields of the resource that will be on the x axis
        by_key(str): key that specifies grouping or stacking of the resources
        cummulation_type(str): type of the cummulation of the data (either stacked or grouped)
        x_axis_label(str): label on the x axis
        y_axis_label(str): label on the y axis
        graph_title(str): name of the graph
        graph_width(int): width of the created bokeh graph

    Returns:
        charts.Bar: bar graph according to the params
    """
    # Convert profile to pandas data grid
    data_frame = convert.resources_to_pandas_dataframe(profile)

    # Create basic graph:
    if cummulation_type == 'stacked':
        bar_graph = create_stacked_bar_graph(data_frame, func, of_key, per_key,
                                             by_key)
    elif cummulation_type == 'grouped':
        bar_graph = create_grouped_bar_graph(data_frame, func, of_key, per_key,
                                             by_key)
    else:
        log.error("unknown cummulation type '{}'".format(cummulation_type))

    # Call basic configuration of the graph
    bokeh_helpers.configure_graph(bar_graph, profile, func, graph_title,
                                  x_axis_label, y_axis_label, graph_width)

    return bar_graph