コード例 #1
0
sys.path.insert(0, '/data/ap4909/30.10.2013-hot_cold_geochem/mantle_temp_cals/calculate_p_t_using_lee/aux_files')
import pet_read_in_with_labels


from scipy.optimize import fsolve

samps_markers={}
h2o_colours={0:"r",4:'g',8:'b'}

volcano_names=["Ata","Tofua","Niuatoputapu","Tafahi","Kao","Late"]
island_symbols={"Agrigan":".","Almagan":"v","Anatahan":"8","Asuncion":"s","Guguan":"D","Pagan":'p',"Sarigan":"*","Uracas":"o"}#symbols for each island
h2o_vals=np.linspace(0,8,10)
for sub_zone in["Southern_Marianas"]:# 
		
	samps1=pet_read_in_with_labels.pet_read_in("/data/ap4909/30.10.2013-hot_cold_geochem/get_lat_lon_data/sz_with_lat_lon/individual_files/individual_files_with_feo/%s_new.xls"%(sub_zone),1,sub_zone)[0]
	
	mineral_props={"Fo=92":{"ol":0.65,"opx":0.3,"cpx":0.05},"Fo=91":{"ol":0.65,"opx":0.25,"cpx":0.1},"Fo=90":{"ol":0.65,"opx":0.2,"cpx":0.15}}	#mineral proportions for fo90,fo91,fo92 mantle

	for samps,symbol,colour,label in zip([samps1],["s"],["r"],["My samples"]):
		
		

		for comp in [0.9]:	
				for key,value in samps.iteritems():
					print key
					P_vals=[]
					mf_vals=[]
					for h2o in h2o_vals:
					
						ti_corrected=value.get_ti_corrected(0.9,h2o,0.25)
コード例 #2
0
        comp_frac_1 = np.interp(comp, mg_num_pressures[2], mf_pressures[2])
        comp_frac_2 = np.interp(comp, mg_num_pressures[3], mf_pressures[3])
        comp_frac_list = [comp_frac_1, comp_frac_2]
        comp_frac = np.interp(P, [2, 3], comp_frac_list)
    elif pre_P > 3:
        comp_frac = np.interp(comp, mg_num_pressures[3], mf_pressures[3])

    cpx_mode = value.mineral_mode(
        comp_frac, pre_P, "cpx")  #getting modal abundance of cpx in source
    return cpx_mode


for sub_zone in ["Southern_Marianas"]:  #

    samps1 = pet_read_in_with_labels.pet_read_in(
        "/data/ap4909/30.10.2013-hot_cold_geochem/get_lat_lon_data/sz_with_lat_lon/individual_files/individual_files_with_feo/%s_new.xls"
        % (sub_zone), 1, sub_zone)[0]
    kelley_samps = pet_read_in_with_labels.pet_read_in(
        "/data/ap4909/30.10.2013-hot_cold_geochem/sample_testing/southern_marianas/kelley/kelley_appendix_4_formatted.xls",
        1, sub_zone)[0]

    mineral_props = {
        "Fo=92": {
            "ol": 0.65,
            "opx": 0.3,
            "cpx": 0.05
        },
        "Fo=91": {
            "ol": 0.65,
            "opx": 0.25,
            "cpx": 0.1
コード例 #3
0
	ti_source.append(batch_modal_melting(f,0.09)*0.09)
	

ti_mg_num=[]
for tim in ti_melt_fraction:
	ti_mg_num.append(np.interp(tim,mf,mg_nums))


print ti_mg_num
for zone in ["Southern_Marianas"]:#["Southern_Marianas","South_Sandwich","West_Aleutians","Izu","South_Lesser_Antilles","Tonga","Central_Aleutians","Kermadec","New_Britain","New_Zealand","North_Vanuatu"]:
	sub_zone="%s"%zone
	print sub_zone
	
	labels=[]
	index=1
	samps1=pet_read_in_with_labels.pet_read_in("/data/ap4909/30.10.2013-hot_cold_geochem/get_lat_lon_data/sz_with_lat_lon/individual_files/individual_files_with_feo/%s_new.xls"%(sub_zone),1,sub_zone)[0]
	one_samp={}
	kelley_samps=pet_read_in_with_labels.pet_read_in("/data/ap4909/30.10.2013-hot_cold_geochem/sample_testing/southern_marianas/kelley/kelley_appendix_4_formatted.xls",0,sub_zone)[0]
	sample_best_P_vals=[]
	sample_best_f=[]
	sample_best_ti_source=[]
	sample_best_source_mg=[]
	for samps,symbol in zip([kelley_samps,samps1],["d","s"]):
	#for samps,symbol in zip([samps1],["s"]):
		for key,value in samps.iteritems():
			
			if value.pts["MGO(WT%)"]>6:# and key not in exclude_samps:
		
				katz_mg_res_fit=[]
				ti_mg_res_fit=[]
    x0 = fsolve(mf_root_finding, 0, (cond[1], cond[0], h2o_bulk))[0]
    return x0


volcano_TP = {
    "Agrigan": [1330, 1.87],
    "Guguan": [1356, 1.9],
    "Pagan": [1346, 1.61],
    "Sarigan": [1260, 1.14]
}
volcano_colours = {"Agrigan": "b", "Guguan": "r", "Pagan": "g", "Sarigan": "m"}
for sub_zone in ["Southern_Marianas"]:  #

    #samps1=pet_read_in_with_labels.pet_read_in("/data/ap4909/30.10.2013-hot_cold_geochem/get_lat_lon_data/sz_with_lat_lon/individual_files/individual_files_with_feo/%s_new.xls"%(sub_zone),1,sub_zone)[0]
    kelley_samps = pet_read_in_with_labels.pet_read_in(
        "/data/ap4909/30.10.2013-hot_cold_geochem/sample_testing/southern_marianas/kelley/kelley_appendix_4_formatted.xls",
        0, sub_zone)[0]

    mineral_props = {
        "Fo=92": {
            "ol": 0.65,
            "opx": 0.3,
            "cpx": 0.05
        },
        "Fo=91": {
            "ol": 0.65,
            "opx": 0.25,
            "cpx": 0.1
        },
        "Fo=90": {
            "ol": 0.65,
				b=132.899012
				
				c=1159.66061#value from kelley 2010
				x=-136.88
				y=332.01
		
				Dh2o=0.012
				return h2o_bulk-(Dh2o*(1-Ff)+Ff)*((T-(a*P**2+b*P+c)-(x*math.log(P)+y)*F)/-60)**1.85
			x0=fsolve(mf_root_finding,0,(cond[1],cond[0],h2o_bulk))[0]
			return x0
volcano_TP={"Agrigan":[1330,1.87],"Guguan":[1356,1.9],"Pagan":[1346,1.61],"Sarigan":[1260,1.14]}
volcano_colours={"Agrigan":"b","Guguan":"r","Pagan":"g","Sarigan":"m"}
for sub_zone in["Southern_Marianas"]:# 
		
	#samps1=pet_read_in_with_labels.pet_read_in("/data/ap4909/30.10.2013-hot_cold_geochem/get_lat_lon_data/sz_with_lat_lon/individual_files/individual_files_with_feo/%s_new.xls"%(sub_zone),1,sub_zone)[0]
	kelley_samps=pet_read_in_with_labels.pet_read_in("/data/ap4909/30.10.2013-hot_cold_geochem/sample_testing/southern_marianas/kelley/kelley_appendix_4_formatted.xls",0,sub_zone)[0]
	
	mineral_props={"Fo=92":{"ol":0.65,"opx":0.3,"cpx":0.05},"Fo=91":{"ol":0.65,"opx":0.25,"cpx":0.1},"Fo=90":{"ol":0.65,"opx":0.2,"cpx":0.15}}	#mineral proportions for fo90,fo91,fo92 mantle

	ax=plt.gca()
	#ax2=ax.twinx()
	latitudes=[]
	p_vals=[]
	mf_vals=[]
	for samps,symbol in zip([kelley_samps],["d"]):
	#for samps,symbol in zip([samps1],["s"]):
		
		
		
		
		for h2o in [4]:
コード例 #6
0
	samp_errors={} #stores lowest for each sample 
	done=0	#indicating whether first composition has been run through
	sub_zone="%s"%zone
	#Pressure function
	d_a=[ 0.,     3000.,    15000.,    24400.,    71000.,   171000.,   220000.,271000.,   371000.,   400000.,   471000.,   571000.,  670000.,   771000., 871000.,   971000.,  1071000.,  1171000.,  1271000.,  1371000.,  1471000.,1571000.,  1671000.,  1771000.,  1871000.,  1971000.,  2071000.,  2171000.,2271000.,  2371000., 2471000.,  2571000.,  2671000.,  2771000.,  2871000.,2891000.]	#PREM depths

	p_a=[  0.00000000e+00,   0.00000000e+00,   3.00000000e+08,   6.00000000e+08,  2.20000000e+09,   5.50000000e+09 ,  7.10000000e+09,   8.90000000e+09,   1.23000000e+10,   1.34000000e+10,   1.60000000e+10,   1.99000000e+10,   2.38000000e+10,   2.83000000e+10,  3.28000000e+10,   3.73000000e+10,   4.19000000e+10 ,  4.65000000e+10,   5.12000000e+10,  5.59000000e+10,  6.07000000e+10,   6.55000000e+10,7.04000000e+10,   7.54000000e+10,   8.04000000e+10,   8.55000000e+10,   9.06000000e+10,   9.58000000e+10,   1.01100000e+11,   1.06400000e+11,   1.11900000e+11,   1.17400000e+11,   1.23000000e+11,   1.28800000e+11 ,  1.34600000e+11,   1.35800000e+11]	#PREM pressures
	def prem_pressure(height):
		for prem_depth in range(1,len(d_a)):	#loops through depths, starting at index one
			if -height<=d_a[prem_depth]: #checks in which depth interval the height is 
				Pressure=((p_a[prem_depth]-p_a[prem_depth-1])/(d_a[prem_depth]-d_a[prem_depth-1]))*((-height)-d_a[prem_depth-1])+p_a[prem_depth-1]
				break
		return Pressure
	labels=[]
	index=1
	samps=pet_read_in_with_labels.pet_read_in("pt_files/%s_calculate_pt.csv"%(sub_zone))
	#samps=pet_read_in_with_labels.pet_read_in("testing/test1.csv")
	mineral_props={"Fo=92":{"ol":0.65,"opx":0.3,"cpx":0.05},"Fo=91":{"ol":0.65,"opx":0.25,"cpx":0.1},"Fo=90":{"ol":0.65,"opx":0.2,"cpx":0.15}}	#mineral proportions for fo90,fo91,fo92 mantle
	mant_vals={"Fo=92":{"Y":3.129,"La":0.134,"Ti":650.0},"Fo=91":{"Y":3.328,"La":0.192,"Ti":716.3},"Fo=90":{"Y":3.548,"La":0.253,"Ti":792.0}}#mantle concentrations for DDMM, Ave DMM and enriched DMM from workman and Hart 2005


	for comp in mant_vals.keys():
		
		for key,value in samps.iteritems():
			
			ti_est=[]# list to store ti melt fraction estimates at different h2os
			Y_est=[]# list to store Y melt fraction estimates at different h2os
			katz_est=[]# list to store major element melt fraction estimates at different h2os
			pt_sample={}
			
			#Plotting F estimates from element concs