コード例 #1
0
        def forOnePoint_ecal_neq_0(e, h):
            # the neighbours of the point (ecal,hcal) = (e,h)
            dist, ind = self.neigh_ecal_neq_0.kneighbors([[e, h]])
            true = z[ind][0]
            hcal = y[ind][0]
            ecal = x[ind][0]
            binwidth = 1
            nbins = np.arange(min(true), max(true) + binwidth, binwidth)
            with warnings.catch_warnings():
                try:
                    #we create the histogram
                    warnings.simplefilter("error", OptimizeWarning)
                    entries, bin_edges = np.histogram(true, bins=nbins)
                    bin_middles = 0.5 * (bin_edges[1:] + bin_edges[:-1])
                    bin_middles = bin_middles[entries != 0]
                    entries = entries[entries != 0]
                    reduced = math.nan

                    # we fit the histogram
                    p0 = np.sqrt(np.std(entries)), bin_middles[np.argmax(
                        entries)], max(entries)
                    error = np.sqrt(entries)
                    parameters, cov_matrix = curve_fit(gaussian_param,
                                                       bin_middles,
                                                       entries,
                                                       sigma=error,
                                                       p0=p0)
                    res = parameters[1]

                    chi2 = np.sum(
                        ((gaussian_param(bin_middles, *parameters) - entries) /
                         error)**2)
                    reduced = chi2 / (len(bin_middles) - len(parameters))

                    if reduced > 10:
                        raise OptimizeWarning

                except (OptimizeWarning, RuntimeError):
                    parameters = p0
                    res = parameters[1]
                    if e + h < self.lim:
                        print("calibration issue for ecal = ", e, " hcal = ",
                              h)
                finally:
                    # we save the values in the attributs
                    self.evaluatedPoint_neighbours_ecal.append(ecal)
                    self.evaluatedPoint_neighbours_hcal.append(hcal)
                    self.evaluatedPoint_neighbours_true.append(true)
                    self.evaluatedPoint_entries.append(entries)
                    self.evaluatedPoint_bin_middles.append(bin_middles)
                    self.evaluatedPoint_ecal.append(e)
                    self.evaluatedPoint_hcal.append(h)
                    self.evaluatedPoint_true.append(res)
                    self.evaluatedPoint_parameters.append(parameters)
                    self.evaluatedPoint_reducedchi2.append(reduced)
                    return res
コード例 #2
0
        def predictSingleValue(ecal, hcal):
            if ecal + hcal > self.lim:
                return math.nan
            reduced = math.nan
            if ecal == 0:
                dist, ind = self.neigh_ecal_eq_0.kneighbors(X=hcal)
                dist = dist[0]
                ind = ind[0]

                dlim = hcal - self.hcal_train_ecal_eq_0_min + 0.1
                if hcal < self.hcal_train_ecal_eq_0_min:
                    dlim = self.hcal_train_ecal_eq_0_min + 0.1
                ind = ind[dist <= dlim]

                true_neigh = self.true_train_ecal_eq_0[ind]
                binwidth = 1

                nbins = np.arange(min(true_neigh),
                                  max(true_neigh) + binwidth, binwidth)
                with warnings.catch_warnings():
                    try:
                        #we create the histogram
                        warnings.simplefilter("error", OptimizeWarning)
                        entries, bin_edges = np.histogram(true_neigh,
                                                          bins=nbins)
                        bin_middles = 0.5 * (bin_edges[1:] + bin_edges[:-1])
                        bin_middles = bin_middles[entries != 0]
                        entries = entries[entries != 0]

                        # we fit the histogram
                        p0 = np.sqrt(np.std(entries)), bin_middles[np.argmax(
                            entries)], max(entries)
                        error = np.sqrt(entries)
                        parameters, cov_matrix = curve_fit(gaussian_param,
                                                           bin_middles,
                                                           entries,
                                                           sigma=error,
                                                           p0=p0)
                        res = parameters[1]

                        chi2 = np.sum(
                            ((gaussian_param(bin_middles, *parameters) -
                              entries) / error)**2)
                        reduced = chi2 / (len(bin_middles) - len(parameters))

                        if reduced > 10:
                            raise OptimizeWarning

                    except (OptimizeWarning, RuntimeError):
                        parameters = p0
                        res = parameters[1]
                        print("calibration issue for ecal = 0, hcal = ", hcal,
                              "reduced chi2 = ", reduced)
                    finally:
                        return res
            else:
                dist, ind = self.neigh_ecal_neq_0.kneighbors(X=[[ecal, hcal]])
                dist = dist[0]
                ind = ind[0]

                true_neigh = self.true_train_ecal_neq_0[ind]
                binwidth = 1
                nbins = np.arange(min(true_neigh),
                                  max(true_neigh) + binwidth, binwidth)

                try:
                    #we create the histogram
                    warnings.simplefilter("error", OptimizeWarning)
                    entries, bin_edges = np.histogram(true_neigh, bins=nbins)
                    bin_middles = 0.5 * (bin_edges[1:] + bin_edges[:-1])
                    bin_middles = bin_middles[entries != 0]
                    entries = entries[entries != 0]

                    # we fit the histogram
                    p0 = np.sqrt(np.std(entries)), bin_middles[np.argmax(
                        entries)], max(entries)
                    error = np.sqrt(entries)
                    parameters, cov_matrix = curve_fit(gaussian_param,
                                                       bin_middles,
                                                       entries,
                                                       sigma=error,
                                                       p0=p0)
                    res = parameters[1]

                    chi2 = np.sum(
                        ((gaussian_param(bin_middles, *parameters) - entries) /
                         error)**2)
                    reduced = chi2 / (len(bin_middles) - len(parameters))

                    if reduced > 10:
                        raise OptimizeWarning
                except (OptimizeWarning, RuntimeError):
                    parameters = p0
                    res = parameters[1]
                    print("calibration issue for ecal = ", ecal, ", hcal = ",
                          hcal, "reduced chi2 = ", reduced,
                          "remained neighbours = ", len(true_neigh))
                finally:
                    return res
コード例 #3
0
entries1 = KNNGF.evaluatedPoint_entries_ecal_eq_0[i1]
bin_middles1 = KNNGF.evaluatedPoint_bin_middles_ecal_eq_0[i1]
error1 = np.sqrt(entries1)
params1 = KNNGF.evaluatedPoint_parameters_ecal_eq_0[i1]
e2 = KNNGF.evaluatedPoint_ecal[i2]
h2 = KNNGF.evaluatedPoint_hcal[i2]
entries2 = KNNGF.evaluatedPoint_entries[i2]
bin_middles2 = KNNGF.evaluatedPoint_bin_middles[i2]
error2 = np.sqrt(entries2)
params2 = KNNGF.evaluatedPoint_parameters[i2]

fig = plt.figure(figsize=(10, 4))
plt.subplot(1, 2, 1)
plt.errorbar(bin_middles1, entries1, yerr=error1, fmt='o')
xplot = np.arange(min(bin_middles1), max(bin_middles1), 1)
plt.plot(xplot, gaussian_param(xplot, *params1), lw=3)
plt.xlabel(r"$e_{true}$", fontsize=12)
plt.title(r"histogram of $e_{true}$ for $(e_{cal}=" + str(np.around(e1, 2)) +
          ",h_{cal}=" + str(np.around(h1, 2)) + ")$",
          fontsize=12)
plt.subplot(1, 2, 2)
plt.errorbar(bin_middles2, entries2, yerr=error2, fmt='o')
plt.plot(xplot, gaussian_param(xplot, *params2), lw=3)
xplot = np.arange(min(bin_middles2), max(bin_middles2), 1)
plt.xlabel(r"$e_{true}$", fontsize=12)
plt.title(r"histogram of $e_{true}$ for $(e_{cal}=" + str(np.around(e2, 2)) +
          ",h_{cal}=" + str(np.around(h2, 2)) + ")$",
          fontsize=12)
plt.tight_layout()
plt.show()
savefig(fig, directory, classname + "_hist_calib.png")
コード例 #4
0
        def forOnePoint_ecal_eq_0(h):
            # the neighbours of the point (ecal,hcal) = (0,h)
            dist, ind = self.neigh_ecal_eq_0.kneighbors(X=h)
            dist = dist[0]
            ind = ind[0]
            dlim = h - self.hcal_train_ecal_eq_0_min + 0.1
            ind = ind[dist <= dlim]
            true = z[ind]
            hcal = y[ind]
            binwidth = 1
            reduced = math.nan
            with warnings.catch_warnings():
                try:
                    if len(true) == 0:
                        raise UserWarning
                    nbins = np.arange(min(true),
                                      max(true) + binwidth, binwidth)
                    #we create the histogram
                    warnings.simplefilter("error", OptimizeWarning)
                    entries, bin_edges = np.histogram(true, bins=nbins)
                    bin_middles = 0.5 * (bin_edges[1:] + bin_edges[:-1])
                    bin_middles = bin_middles[entries != 0]
                    entries = entries[entries != 0]

                    # we fit the histogram
                    p0 = np.sqrt(np.std(entries)), bin_middles[np.argmax(
                        entries)], max(entries)
                    error = np.sqrt(entries)
                    parameters, cov_matrix = curve_fit(gaussian_param,
                                                       bin_middles,
                                                       entries,
                                                       sigma=error,
                                                       p0=p0)
                    res = parameters[1]

                    chi2 = np.sum(
                        ((gaussian_param(bin_middles, *parameters) - entries) /
                         error)**2)
                    reduced = chi2 / (len(bin_middles) - len(parameters))

                    if reduced > 10:
                        raise OptimizeWarning
                except UserWarning:
                    parameters = math.nan
                    entries = math.nan
                    res = math.nan
                    bin_middles = math.nan
                    print("calibration issue for ecal = 0, hcal = ", h,
                          "reduced chi2 = ", reduced)
                except (OptimizeWarning, RuntimeError):
                    parameters = p0
                    res = parameters[1]
                    print("calibration issue for ecal = 0, hcal = ", h,
                          "reduced chi2 = ", reduced)
                finally:
                    # we save the values in the attributs
                    self.evaluatedPoint_hcal_ecal_eq_0.append(h)
                    self.evaluatedPoint_true_ecal_eq_0.append(res)
                    self.evaluatedPoint_parameters_ecal_eq_0.append(parameters)
                    self.evaluatedPoint_neighbours_hcal_ecal_eq_0.append(hcal)
                    self.evaluatedPoint_neighbours_true_ecal_eq_0.append(true)
                    self.evaluatedPoint_entries_ecal_eq_0.append(entries)
                    self.evaluatedPoint_bin_middles_ecal_eq_0.append(
                        bin_middles)
                    self.evaluatedPoint_reducedchi2_ecal_eq_0.append(reduced)

                    return res