コード例 #1
0
ファイル: pfp_levels.py プロジェクト: kashifmahmud/PyFluxPro
def l4qc(main_gui, cf, ds3):
    ds4 = pfp_io.copy_datastructure(cf, ds3)
    # ds4 will be empty (logical false) if an error occurs in copy_datastructure
    # return from this routine if this is the case
    if not ds4:
        return ds4
    # set some attributes for this level
    pfp_utils.UpdateGlobalAttributes(cf, ds4, "L4")
    # check to see if we have any imports
    pfp_gf.ImportSeries(cf, ds4)
    # re-apply the quality control checks (range, diurnal and rules)
    pfp_ck.do_qcchecks(cf, ds4)
    # now do the meteorological driver gap filling
    # parse the control file for information on how the user wants to do the gap filling
    l4_info = pfp_gf.ParseL4ControlFile(cf, ds4)
    if ds4.returncodes["value"] != 0:
        return ds4
    # *** start of the section that does the gap filling of the drivers ***
    # read the alternate data files
    ds_alt = pfp_gf.ReadAlternateFiles(ds4, l4_info)
    # fill short gaps using interpolation
    pfp_gf.GapFillUsingInterpolation(cf, ds4)
    # gap fill using climatology
    if "GapFillFromClimatology" in l4_info:
        pfp_gf.GapFillFromClimatology(ds4, l4_info, "GapFillFromClimatology")
    # do the gap filling using the ACCESS output
    if "GapFillFromAlternate" in l4_info:
        pfp_gfALT.GapFillFromAlternate(main_gui, ds4, ds_alt, l4_info, "GapFillFromAlternate")
        if ds4.returncodes["value"] != 0:
            return ds4
    # merge the first group of gap filled drivers into a single series
    pfp_ts.MergeSeriesUsingDict(ds4, l4_info, merge_order="prerequisite")
    # re-calculate the ground heat flux but only if requested in control file
    opt = pfp_utils.get_keyvaluefromcf(cf,["Options"], "CorrectFgForStorage", default="No", mode="quiet")
    if opt.lower() != "no":
        pfp_ts.CorrectFgForStorage(cf, ds4, Fg_out='Fg', Fg_in='Fg_Av', Ts_in='Ts', Sws_in='Sws')
    # re-calculate the net radiation
    pfp_ts.CalculateNetRadiation(cf, ds4, Fn_out='Fn', Fsd_in='Fsd', Fsu_in='Fsu', Fld_in='Fld', Flu_in='Flu')
    # re-calculate the available energy
    pfp_ts.CalculateAvailableEnergy(ds4, Fa_out='Fa', Fn_in='Fn', Fg_in='Fg')
    # merge the second group of gap filled drivers into a single series
    pfp_ts.MergeSeriesUsingDict(ds4, l4_info, merge_order="standard")
    # re-calculate the water vapour concentrations
    pfp_ts.CalculateHumiditiesAfterGapFill(ds4, l4_info)
    # re-calculate the meteorological variables
    pfp_ts.CalculateMeteorologicalVariables(ds4, l4_info)
    # check for any missing data
    pfp_utils.get_missingingapfilledseries(ds4, l4_info)
    # write the percentage of good data as a variable attribute
    pfp_utils.get_coverage_individual(ds4)
    # write the percentage of good data for groups
    pfp_utils.get_coverage_groups(ds4)
    # remove intermediate series from the data structure
    pfp_ts.RemoveIntermediateSeries(ds4, l4_info)

    return ds4
コード例 #2
0
def l4qc(cf, ds3):

    # !!! code here to use existing L4 file
    # logic
    # if the L4 doesn't exist
    #  - create ds4 by using copy.deepcopy(ds3)
    # if the L4 does exist and the "UseExistingL4File" option is False
    #  - create ds4 by using copy.deepcopy(ds3)
    # if the L4 does exist and the "UseExistingL4File" option is True
    #  - read the contents of the L4 netCDF file
    #  - check the start and end dates of the L3 and L4 data
    #     - if these are the same then tell the user there is nothing to do
    #  - copy the L3 data to the L4 data structure
    #  - replace the L3 data with the L4 data
    #ds4 = copy.deepcopy(ds3)
    ds4 = pfp_io.copy_datastructure(cf, ds3)
    # ds4 will be empty (logical false) if an error occurs in copy_datastructure
    # return from this routine if this is the case
    if not ds4: return ds4
    # set some attributes for this level
    pfp_utils.UpdateGlobalAttributes(cf, ds4, "L4")
    ds4.cf = cf
    ## calculate the available energy
    #if "Fa" not in ds4.series.keys():
    #pfp_ts.CalculateAvailableEnergy(ds4,Fa_out='Fa',Fn_in='Fn',Fg_in='Fg')
    # create a dictionary to hold the gap filling data
    ds_alt = {}
    # check to see if we have any imports
    pfp_gf.ImportSeries(cf, ds4)
    # re-apply the quality control checks (range, diurnal and rules)
    pfp_ck.do_qcchecks(cf, ds4)
    # now do the meteorological driver gap filling
    for ThisOne in cf["Drivers"].keys():
        if ThisOne not in ds4.series.keys():
            logger.warning("Series " + ThisOne + " not in data structure")
            continue
        # parse the control file for information on how the user wants to do the gap filling
        pfp_gf.GapFillParseControlFile(cf, ds4, ThisOne, ds_alt)
    # *** start of the section that does the gap filling of the drivers ***
    # fill short gaps using interpolation
    pfp_gf.GapFillUsingInterpolation(cf, ds4)
    # gap fill using climatology
    pfp_gf.GapFillFromClimatology(ds4)
    # do the gap filling using the ACCESS output
    pfp_gfALT.GapFillFromAlternate(cf, ds4, ds_alt)
    if ds4.returncodes["alternate"] == "quit": return ds4
    # gap fill using SOLO
    pfp_gfSOLO.GapFillUsingSOLO(cf, ds3, ds4)
    if ds4.returncodes["solo"] == "quit": return ds4
    # merge the first group of gap filled drivers into a single series
    pfp_ts.MergeSeriesUsingDict(ds4, merge_order="prerequisite")
    # re-calculate the ground heat flux but only if requested in control file
    opt = pfp_utils.get_keyvaluefromcf(cf, ["Options"],
                                       "CorrectFgForStorage",
                                       default="No",
                                       mode="quiet")
    if opt.lower() != "no":
        pfp_ts.CorrectFgForStorage(cf,
                                   ds4,
                                   Fg_out='Fg',
                                   Fg_in='Fg_Av',
                                   Ts_in='Ts',
                                   Sws_in='Sws')
    # re-calculate the net radiation
    pfp_ts.CalculateNetRadiation(cf,
                                 ds4,
                                 Fn_out='Fn',
                                 Fsd_in='Fsd',
                                 Fsu_in='Fsu',
                                 Fld_in='Fld',
                                 Flu_in='Flu')
    # re-calculate the available energy
    pfp_ts.CalculateAvailableEnergy(ds4, Fa_out='Fa', Fn_in='Fn', Fg_in='Fg')
    # merge the second group of gap filled drivers into a single series
    pfp_ts.MergeSeriesUsingDict(ds4, merge_order="standard")
    # re-calculate the water vapour concentrations
    pfp_ts.CalculateHumiditiesAfterGapFill(ds4)
    # re-calculate the meteorological variables
    pfp_ts.CalculateMeteorologicalVariables(ds4)
    # the Tumba rhumba
    pfp_ts.CalculateComponentsFromWsWd(ds4)
    # check for any missing data
    pfp_utils.get_missingingapfilledseries(ds4)
    # write the percentage of good data as a variable attribute
    pfp_utils.get_coverage_individual(ds4)
    # write the percentage of good data for groups
    pfp_utils.get_coverage_groups(ds4)

    return ds4
コード例 #3
0
def l3qc(cf, ds2):
    """
    """
    # make a copy of the L2 data
    ds3 = copy.deepcopy(ds2)
    # set some attributes for this level
    pfp_utils.UpdateGlobalAttributes(cf, ds3, "L3")
    # put the control file name into the global attributes
    ds3.globalattributes['controlfile_name'] = cf['controlfile_name']
    # check to see if we have any imports
    pfp_gf.ImportSeries(cf, ds3)
    # apply linear corrections to the data
    pfp_ck.do_linear(cf, ds3)
    # ************************
    # *** Merge humidities ***
    # ************************
    # merge whatever humidities are available
    pfp_ts.MergeHumidities(cf, ds3, convert_units=True)
    # **************************
    # *** Merge temperatures ***
    # **************************
    # get the air temperature from the CSAT virtual temperature
    pfp_ts.TaFromTv(cf, ds3)
    # merge the HMP and corrected CSAT data
    pfp_ts.MergeSeries(cf, ds3, "Ta", convert_units=True)
    pfp_utils.CheckUnits(ds3, "Ta", "C", convert_units=True)
    # ***************************
    # *** Calcuate humidities ***
    # ***************************
    # calculate humidities (absolute, specific and relative) from whatever is available
    pfp_ts.CalculateHumidities(ds3)
    # ********************************
    # *** Merge CO2 concentrations ***
    # ********************************
    # merge the 7500 CO2 concentration
    # PRI 09/08/2017 possibly the ugliest thing I have done yet
    # This needs to be abstracted to a general alias checking routine at the
    # start of the L3 processing so that possible aliases are mapped to a single
    # set of variable names.
    if "CO2" in cf["Variables"]:
        CO2 = "CO2"
    elif "Cc" in cf["Variables"]:
        CO2 = "Cc"
    else:
        msg = "Label for CO2 ('CO2','Cc') not found in control file"
        logger.error(msg)
        return
    pfp_ts.MergeSeries(cf, ds3, CO2, convert_units=True)
    # ******************************************
    # *** Calculate meteorological variables ***
    # ******************************************
    # Update meteorological variables
    pfp_ts.CalculateMeteorologicalVariables(ds3)
    # *************************************************
    # *** Calculate fluxes from covariances section ***
    # *************************************************
    # check to see if the user wants to use the fluxes in the L2 file
    if not pfp_utils.cfoptionskeylogical(cf, Key="UseL2Fluxes", default=False):
        # check the covariance units and change if necessary
        pfp_ts.CheckCovarianceUnits(ds3)
        # do the 2D coordinate rotation
        pfp_ts.CoordRotation2D(cf, ds3)
        # do the Massman frequency attenuation correction
        pfp_ts.MassmanStandard(cf, ds3)
        # calculate the fluxes
        pfp_ts.CalculateFluxes(cf, ds3)
        # approximate wT from virtual wT using wA (ref: Campbell OPECSystem manual)
        pfp_ts.FhvtoFh(cf, ds3)
        # correct the H2O & CO2 flux due to effects of flux on density measurements
        pfp_ts.Fe_WPL(cf, ds3)
        pfp_ts.Fc_WPL(cf, ds3)
    # **************************************
    # *** Calculate Monin-Obukhov length ***
    # **************************************
    pfp_ts.CalculateMoninObukhovLength(ds3)
    # **************************
    # *** CO2 and Fc section ***
    # **************************
    # convert CO2 units if required
    pfp_utils.ConvertCO2Units(cf, ds3, CO2=CO2)
    # calculate Fc storage term - single height only at present
    pfp_ts.CalculateFcStorageSinglePoint(cf,
                                         ds3,
                                         Fc_out='Fc_single',
                                         CO2_in=CO2)
    # convert Fc and Fc_storage units if required
    pfp_utils.ConvertFcUnits(cf, ds3)
    # merge Fc and Fc_storage series if required
    merge_list = [
        label for label in cf["Variables"].keys() if label[0:2] == "Fc"
        and "MergeSeries" in cf["Variables"][label].keys()
    ]
    for label in merge_list:
        pfp_ts.MergeSeries(cf, ds3, label, save_originals=True)
    # correct Fc for storage term - only recommended if storage calculated from profile available
    pfp_ts.CorrectFcForStorage(cf, ds3)
    # *************************
    # *** Radiation section ***
    # *************************
    # merge the incoming shortwave radiation
    pfp_ts.MergeSeries(cf, ds3, 'Fsd')
    # calculate the net radiation from the Kipp and Zonen CNR1
    pfp_ts.CalculateNetRadiation(cf,
                                 ds3,
                                 Fn_out='Fn_KZ',
                                 Fsd_in='Fsd',
                                 Fsu_in='Fsu',
                                 Fld_in='Fld',
                                 Flu_in='Flu')
    pfp_ts.MergeSeries(cf, ds3, 'Fn')
    # ****************************************
    # *** Wind speed and direction section ***
    # ****************************************
    # combine wind speed from the Wind Sentry and the SONIC
    pfp_ts.MergeSeries(cf, ds3, 'Ws')
    # combine wind direction from the Wind Sentry and the SONIC
    pfp_ts.MergeSeries(cf, ds3, 'Wd')
    # ********************
    # *** Soil section ***
    # ********************
    # correct soil heat flux for storage
    #    ... either average the raw ground heat flux, soil temperature and moisture
    #        and then do the correction (OzFlux "standard")
    pfp_ts.AverageSeriesByElements(cf, ds3, 'Ts')
    pfp_ts.AverageSeriesByElements(cf, ds3, 'Sws')
    if pfp_utils.cfoptionskeylogical(cf, Key='CorrectIndividualFg'):
        #    ... or correct the individual ground heat flux measurements (James' method)
        pfp_ts.CorrectIndividualFgForStorage(cf, ds3)
        pfp_ts.AverageSeriesByElements(cf, ds3, 'Fg')
    else:
        pfp_ts.AverageSeriesByElements(cf, ds3, 'Fg')
        pfp_ts.CorrectFgForStorage(cf,
                                   ds3,
                                   Fg_out='Fg',
                                   Fg_in='Fg',
                                   Ts_in='Ts',
                                   Sws_in='Sws')
    # calculate the available energy
    pfp_ts.CalculateAvailableEnergy(ds3, Fa_out='Fa', Fn_in='Fn', Fg_in='Fg')
    # create new series using MergeSeries or AverageSeries
    pfp_ck.CreateNewSeries(cf, ds3)
    # re-apply the quality control checks (range, diurnal and rules)
    pfp_ck.do_qcchecks(cf, ds3)
    # coordinate gaps in the three main fluxes
    pfp_ck.CoordinateFluxGaps(cf, ds3)
    # coordinate gaps in Ah_7500_Av with Fc
    pfp_ck.CoordinateAh7500AndFcGaps(cf, ds3)
    # check missing data and QC flags are consistent
    pfp_utils.CheckQCFlags(ds3)
    # get the statistics for the QC flags and write these to an Excel spreadsheet
    pfp_io.get_seriesstats(cf, ds3)
    # write the percentage of good data as a variable attribute
    pfp_utils.get_coverage_individual(ds3)
    # write the percentage of good data for groups
    pfp_utils.get_coverage_groups(ds3)

    return ds3
コード例 #4
0
ファイル: pfp_clim.py プロジェクト: OzFlux/PyFluxPro2.7
def climatology(cf):
    nc_filename = pfp_io.get_infilenamefromcf(cf)
    if not pfp_utils.file_exists(nc_filename): return
    xl_filename = nc_filename.replace(".nc","_Climatology.xls")
    xlFile = xlwt.Workbook()
    ds = pfp_io.nc_read_series(nc_filename)
    # calculate Fa if it is not in the data structure
    got_Fa = True
    if "Fa" not in ds.series.keys():
        if "Fn" in ds.series.keys() and "Fg" in ds.series.keys():
            pfp_ts.CalculateAvailableEnergy(ds,Fa_out='Fa',Fn_in='Fn',Fg_in='Fg')
        else:
            got_Fa = False
            logger.warning(" Fn or Fg not in data struicture")
    # get the time step
    ts = int(ds.globalattributes['time_step'])
    # get the site name
    SiteName = ds.globalattributes['site_name']
    # get the datetime series
    dt = ds.series['DateTime']['Data']
    Hdh = numpy.array([(d.hour + d.minute/float(60)) for d in dt])
    Month = numpy.array([d.month for d in dt])
    # get the initial start and end dates
    StartDate = str(dt[0])
    EndDate = str(dt[-1])
    # find the start index of the first whole day (time=00:30)
    si = pfp_utils.GetDateIndex(dt,StartDate,ts=ts,default=0,match='startnextday')
    # find the end index of the last whole day (time=00:00)
    ei = pfp_utils.GetDateIndex(dt,EndDate,ts=ts,default=-1,match='endpreviousday')
    # get local views of the datetime series
    ldt = dt[si:ei+1]
    Hdh = Hdh[si:ei+1]
    Month = Month[si:ei+1]
    # get the number of time steps in a day and the number of days in the data
    ntsInDay = int(24.0*60.0/float(ts))
    nDays = int(len(ldt))/ntsInDay

    for ThisOne in cf['Variables'].keys():
        if "AltVarName" in cf['Variables'][ThisOne].keys(): ThisOne = cf['Variables'][ThisOne]["AltVarName"]
        if ThisOne in ds.series.keys():
            logger.info(" Doing climatology for "+ThisOne)
            data,f,a = pfp_utils.GetSeriesasMA(ds,ThisOne,si=si,ei=ei)
            if numpy.ma.count(data)==0:
                logger.warning(" No data for "+ThisOne+", skipping ...")
                continue
            fmt_str = get_formatstring(cf,ThisOne,fmt_def='')
            xlSheet = xlFile.add_sheet(ThisOne)
            Av_all = do_diurnalstats(Month,Hdh,data,xlSheet,format_string=fmt_str,ts=ts)
            # now do it for each day
            # we want to preserve any data that has been truncated by the use of the "startnextday"
            # and "endpreviousday" match options used above.  Here we revisit the start and end indices
            # and adjust these backwards and forwards respectively if data has been truncated.
            nDays_daily = nDays
            ei_daily = ei
            si_daily = si
            sdate = ldt[0]
            edate = ldt[-1]
            # is there data after the current end date?
            if dt[-1]>ldt[-1]:
                # if so, push the end index back by 1 day so it is included
                ei_daily = ei + ntsInDay
                nDays_daily = nDays_daily + 1
                edate = ldt[-1]+datetime.timedelta(days=1)
            # is there data before the current start date?
            if dt[0]<ldt[0]:
                # if so, push the start index back by 1 day so it is included
                si_daily = si - ntsInDay
                nDays_daily = nDays_daily + 1
                sdate = ldt[0]-datetime.timedelta(days=1)
            # get the data and use the "pad" option to add missing data if required to
            # complete the extra days
            data,f,a = pfp_utils.GetSeriesasMA(ds,ThisOne,si=si_daily,ei=ei_daily,mode="pad")
            data_daily = data.reshape(nDays_daily,ntsInDay)
            xlSheet = xlFile.add_sheet(ThisOne+'(day)')
            write_data_1columnpertimestep(xlSheet, data_daily, ts, startdate=sdate, format_string=fmt_str)
            data_daily_i = do_2dinterpolation(data_daily)
            xlSheet = xlFile.add_sheet(ThisOne+'i(day)')
            write_data_1columnpertimestep(xlSheet, data_daily_i, ts, startdate=sdate, format_string=fmt_str)
        else:
            logger.warning(" Requested variable "+ThisOne+" not in data structure")
            continue
    logger.info(" Saving Excel file "+os.path.split(xl_filename)[1])
    xlFile.save(xl_filename)
コード例 #5
0
ファイル: pfp_clim.py プロジェクト: mdekauwe/PyFluxPro-1
def climatology(cf):
    nc_filename = pfp_io.get_infilenamefromcf(cf)
    if not pfp_utils.file_exists(nc_filename): return
    xl_filename = nc_filename.replace(".nc", "_Climatology.xls")
    xlFile = xlwt.Workbook()
    ds = pfp_io.nc_read_series(nc_filename)
    # calculate Fa if it is not in the data structure
    got_Fa = True
    if "Fa" not in ds.series.keys():
        if "Fn" in ds.series.keys() and "Fg" in ds.series.keys():
            pfp_ts.CalculateAvailableEnergy(ds,
                                            Fa_out='Fa',
                                            Fn_in='Fn',
                                            Fg_in='Fg')
        else:
            got_Fa = False
            logger.warning(" Fn or Fg not in data struicture")
    # get the time step
    ts = int(ds.globalattributes['time_step'])
    # get the site name
    SiteName = ds.globalattributes['site_name']
    # get the datetime series
    dt = ds.series['DateTime']['Data']
    Hdh = numpy.array([(d.hour + d.minute / float(60)) for d in dt])
    Month = numpy.array([d.month for d in dt])
    # get the initial start and end dates
    StartDate = str(dt[0])
    EndDate = str(dt[-1])
    # find the start index of the first whole day (time=00:30)
    si = pfp_utils.GetDateIndex(dt,
                                StartDate,
                                ts=ts,
                                default=0,
                                match='startnextday')
    # find the end index of the last whole day (time=00:00)
    ei = pfp_utils.GetDateIndex(dt,
                                EndDate,
                                ts=ts,
                                default=-1,
                                match='endpreviousday')
    # get local views of the datetime series
    ldt = dt[si:ei + 1]
    Hdh = Hdh[si:ei + 1]
    Month = Month[si:ei + 1]
    # get the number of time steps in a day and the number of days in the data
    ntsInDay = int(24.0 * 60.0 / float(ts))
    nDays = int(len(ldt)) / ntsInDay

    for ThisOne in cf['Variables'].keys():
        if "AltVarName" in cf['Variables'][ThisOne].keys():
            ThisOne = cf['Variables'][ThisOne]["AltVarName"]
        if ThisOne in ds.series.keys():
            logger.info(" Doing climatology for " + ThisOne)
            data, f, a = pfp_utils.GetSeriesasMA(ds, ThisOne, si=si, ei=ei)
            if numpy.ma.count(data) == 0:
                logger.warning(" No data for " + ThisOne + ", skipping ...")
                continue
            fmt_str = get_formatstring(cf, ThisOne, fmt_def='')
            xlSheet = xlFile.add_sheet(ThisOne)
            Av_all = do_diurnalstats(Month,
                                     Hdh,
                                     data,
                                     xlSheet,
                                     format_string=fmt_str,
                                     ts=ts)
            # now do it for each day
            # we want to preserve any data that has been truncated by the use of the "startnextday"
            # and "endpreviousday" match options used above.  Here we revisit the start and end indices
            # and adjust these backwards and forwards respectively if data has been truncated.
            nDays_daily = nDays
            ei_daily = ei
            si_daily = si
            sdate = ldt[0]
            edate = ldt[-1]
            # is there data after the current end date?
            if dt[-1] > ldt[-1]:
                # if so, push the end index back by 1 day so it is included
                ei_daily = ei + ntsInDay
                nDays_daily = nDays_daily + 1
                edate = ldt[-1] + datetime.timedelta(days=1)
            # is there data before the current start date?
            if dt[0] < ldt[0]:
                # if so, push the start index back by 1 day so it is included
                si_daily = si - ntsInDay
                nDays_daily = nDays_daily + 1
                sdate = ldt[0] - datetime.timedelta(days=1)
            # get the data and use the "pad" option to add missing data if required to
            # complete the extra days
            data, f, a = pfp_utils.GetSeriesasMA(ds,
                                                 ThisOne,
                                                 si=si_daily,
                                                 ei=ei_daily,
                                                 mode="pad")
            data_daily = data.reshape(nDays_daily, ntsInDay)
            xlSheet = xlFile.add_sheet(ThisOne + '(day)')
            write_data_1columnpertimestep(xlSheet,
                                          data_daily,
                                          ts,
                                          startdate=sdate,
                                          format_string=fmt_str)
            data_daily_i = do_2dinterpolation(data_daily)
            xlSheet = xlFile.add_sheet(ThisOne + 'i(day)')
            write_data_1columnpertimestep(xlSheet,
                                          data_daily_i,
                                          ts,
                                          startdate=sdate,
                                          format_string=fmt_str)
        elif ThisOne == "EF" and got_Fa:
            logger.info(" Doing evaporative fraction")
            EF = numpy.ma.zeros([48, 12]) + float(c.missing_value)
            Hdh, f, a = pfp_utils.GetSeriesasMA(ds, 'Hdh', si=si, ei=ei)
            Fa, f, a = pfp_utils.GetSeriesasMA(ds, 'Fa', si=si, ei=ei)
            Fe, f, a = pfp_utils.GetSeriesasMA(ds, 'Fe', si=si, ei=ei)
            for m in range(1, 13):
                mi = numpy.where(Month == m)[0]
                Fa_Num, Hr, Fa_Av, Sd, Mx, Mn = get_diurnalstats(
                    Hdh[mi], Fa[mi], ts)
                Fe_Num, Hr, Fe_Av, Sd, Mx, Mn = get_diurnalstats(
                    Hdh[mi], Fe[mi], ts)
                index = numpy.ma.where((Fa_Num > 4) & (Fe_Num > 4))
                EF[:, m - 1][index] = Fe_Av[index] / Fa_Av[index]
            # reject EF values greater than upper limit or less than lower limit
            upr, lwr = get_rangecheck_limit(cf, 'EF')
            EF = numpy.ma.filled(
                numpy.ma.masked_where((EF > upr) | (EF < lwr), EF),
                float(c.missing_value))
            # write the EF to the Excel file
            xlSheet = xlFile.add_sheet('EF')
            write_data_1columnpermonth(xlSheet, EF, ts, format_string='0.00')
            # do the 2D interpolation to fill missing EF values
            EFi = do_2dinterpolation(EF)
            xlSheet = xlFile.add_sheet('EFi')
            write_data_1columnpermonth(xlSheet, EFi, ts, format_string='0.00')
            # now do EF for each day
            Fa, f, a = pfp_utils.GetSeriesasMA(ds, 'Fa', si=si, ei=ei)
            Fe, f, a = pfp_utils.GetSeriesasMA(ds, 'Fe', si=si, ei=ei)
            EF = Fe / Fa
            EF = numpy.ma.filled(
                numpy.ma.masked_where((EF > upr) | (EF < lwr), EF),
                float(c.missing_value))
            EF_daily = EF.reshape(nDays, ntsInDay)
            xlSheet = xlFile.add_sheet('EF(day)')
            write_data_1columnpertimestep(xlSheet,
                                          EF_daily,
                                          ts,
                                          startdate=ldt[0],
                                          format_string='0.00')
            EFi = do_2dinterpolation(EF_daily)
            xlSheet = xlFile.add_sheet('EFi(day)')
            write_data_1columnpertimestep(xlSheet,
                                          EFi,
                                          ts,
                                          startdate=ldt[0],
                                          format_string='0.00')
        elif ThisOne == "BR":
            logger.info(" Doing Bowen ratio")
            BR = numpy.ma.zeros([48, 12]) + float(c.missing_value)
            Fe, f, a = pfp_utils.GetSeriesasMA(ds, 'Fe', si=si, ei=ei)
            Fh, f, a = pfp_utils.GetSeriesasMA(ds, 'Fh', si=si, ei=ei)
            for m in range(1, 13):
                mi = numpy.where(Month == m)[0]
                Fh_Num, Hr, Fh_Av, Sd, Mx, Mn = get_diurnalstats(
                    Hdh[mi], Fh[mi], ts)
                Fe_Num, Hr, Fe_Av, Sd, Mx, Mn = get_diurnalstats(
                    Hdh[mi], Fe[mi], ts)
                index = numpy.ma.where((Fh_Num > 4) & (Fe_Num > 4))
                BR[:, m - 1][index] = Fh_Av[index] / Fe_Av[index]
            # reject BR values greater than upper limit or less than lower limit
            upr, lwr = get_rangecheck_limit(cf, 'BR')
            BR = numpy.ma.filled(
                numpy.ma.masked_where((BR > upr) | (BR < lwr), BR),
                float(c.missing_value))
            # write the BR to the Excel file
            xlSheet = xlFile.add_sheet('BR')
            write_data_1columnpermonth(xlSheet, BR, ts, format_string='0.00')
            # do the 2D interpolation to fill missing EF values
            BRi = do_2dinterpolation(BR)
            xlSheet = xlFile.add_sheet('BRi')
            write_data_1columnpermonth(xlSheet, BRi, ts, format_string='0.00')
            # now do BR for each day ...
            Fe, f, a = pfp_utils.GetSeriesasMA(ds, 'Fe', si=si, ei=ei)
            Fh, f, a = pfp_utils.GetSeriesasMA(ds, 'Fh', si=si, ei=ei)
            BR = Fh / Fe
            BR = numpy.ma.filled(
                numpy.ma.masked_where((BR > upr) | (BR < lwr), BR),
                float(c.missing_value))
            BR_daily = BR.reshape(nDays, ntsInDay)
            xlSheet = xlFile.add_sheet('BR(day)')
            write_data_1columnpertimestep(xlSheet,
                                          BR_daily,
                                          ts,
                                          startdate=ldt[0],
                                          format_string='0.00')
            BRi = do_2dinterpolation(BR_daily)
            xlSheet = xlFile.add_sheet('BRi(day)')
            write_data_1columnpertimestep(xlSheet,
                                          BRi,
                                          ts,
                                          startdate=ldt[0],
                                          format_string='0.00')
        elif ThisOne == "WUE":
            logger.info(" Doing ecosystem WUE")
            WUE = numpy.ma.zeros([48, 12]) + float(c.missing_value)
            Fe, f, a = pfp_utils.GetSeriesasMA(ds, 'Fe', si=si, ei=ei)
            Fc, f, a = pfp_utils.GetSeriesasMA(ds, 'Fc', si=si, ei=ei)
            for m in range(1, 13):
                mi = numpy.where(Month == m)[0]
                Fc_Num, Hr, Fc_Av, Sd, Mx, Mn = get_diurnalstats(
                    Hdh[mi], Fc[mi], ts)
                Fe_Num, Hr, Fe_Av, Sd, Mx, Mn = get_diurnalstats(
                    Hdh[mi], Fe[mi], ts)
                index = numpy.ma.where((Fc_Num > 4) & (Fe_Num > 4))
                WUE[:, m - 1][index] = Fc_Av[index] / Fe_Av[index]
            # reject WUE values greater than upper limit or less than lower limit
            upr, lwr = get_rangecheck_limit(cf, 'WUE')
            WUE = numpy.ma.filled(
                numpy.ma.masked_where((WUE > upr) | (WUE < lwr), WUE),
                float(c.missing_value))
            # write the WUE to the Excel file
            xlSheet = xlFile.add_sheet('WUE')
            write_data_1columnpermonth(xlSheet,
                                       WUE,
                                       ts,
                                       format_string='0.00000')
            # do the 2D interpolation to fill missing EF values
            WUEi = do_2dinterpolation(WUE)
            xlSheet = xlFile.add_sheet('WUEi')
            write_data_1columnpermonth(xlSheet,
                                       WUEi,
                                       ts,
                                       format_string='0.00000')
            # now do WUE for each day ...
            Fe, f, a = pfp_utils.GetSeriesasMA(ds, 'Fe', si=si, ei=ei)
            Fc, f, a = pfp_utils.GetSeriesasMA(ds, 'Fc', si=si, ei=ei)
            WUE = Fc / Fe
            WUE = numpy.ma.filled(
                numpy.ma.masked_where((WUE > upr) | (WUE < lwr), WUE),
                float(c.missing_value))
            WUE_daily = WUE.reshape(nDays, ntsInDay)
            xlSheet = xlFile.add_sheet('WUE(day)')
            write_data_1columnpertimestep(xlSheet,
                                          WUE_daily,
                                          ts,
                                          startdate=ldt[0],
                                          format_string='0.00000')
            WUEi = do_2dinterpolation(WUE_daily)
            xlSheet = xlFile.add_sheet('WUEi(day)')
            write_data_1columnpertimestep(xlSheet,
                                          WUEi,
                                          ts,
                                          startdate=ldt[0],
                                          format_string='0.00000')
        else:
            logger.warning(" Requested variable " + ThisOne +
                           " not in data structure")
            continue
    logger.info(" Saving Excel file " + os.path.split(xl_filename)[1])
    xlFile.save(xl_filename)
コード例 #6
0
ファイル: pfp_levels.py プロジェクト: kashifmahmud/PyFluxPro
def l3qc(cf, ds2):
    """
    """
    # make a copy of the L2 data
    ds3 = copy.deepcopy(ds2)
    # set some attributes for this level
    pfp_utils.UpdateGlobalAttributes(cf, ds3, "L3")
    # check to see if we have any imports
    pfp_gf.ImportSeries(cf,ds3)
    # apply linear corrections to the data
    pfp_ck.do_linear(cf,ds3)
    # parse the control file for information on how the user wants to do the gap filling
    l3_info = pfp_compliance.ParseL3ControlFile(cf, ds3)
    if l3_info["status"]["value"] != 0:
        logger.error(l3_info["status"]["message"])
        return ds3
    # ************************
    # *** Merge humidities ***
    # ************************
    # merge whatever humidities are available
    pfp_ts.MergeHumidities(cf, ds3, convert_units=True)
    # **************************
    # *** Merge temperatures ***
    # **************************
    # get the air temperature from the CSAT virtual temperature
    pfp_ts.TaFromTv(cf, ds3)
    # merge the HMP and corrected CSAT data
    pfp_ts.CombineSeries(cf, ds3, "Ta", convert_units=True)
    pfp_utils.CheckUnits(ds3, "Ta", "degC", convert_units=True)
    # ***************************
    # *** Calcuate humidities ***
    # ***************************
    # calculate humidities (absolute, specific and relative) from whatever is available
    pfp_ts.CalculateHumidities(ds3)
    # ********************************
    # *** Merge CO2 concentrations ***
    # ********************************
    # merge the CO2 concentration
    pfp_ts.CombineSeries(cf, ds3, l3_info["CO2"]["label"], convert_units=True)
    # ******************************************
    # *** Calculate meteorological variables ***
    # ******************************************
    # Update meteorological variables
    pfp_ts.CalculateMeteorologicalVariables(ds3, l3_info)
    # *************************************************
    # *** Calculate fluxes from covariances section ***
    # *************************************************
    # check to see if the user wants to use the fluxes in the L2 file
    if not pfp_utils.get_optionskeyaslogical(cf, "UseL2Fluxes", default=False):
        # check the covariance units and change if necessary
        pfp_ts.CheckCovarianceUnits(ds3)
        # do the 2D coordinate rotation
        pfp_ts.CoordRotation2D(cf, ds3)
        # do the Massman frequency attenuation correction
        pfp_ts.MassmanStandard(cf, ds3)
        # calculate the fluxes
        pfp_ts.CalculateFluxes(cf, ds3)
        # approximate wT from virtual wT using wA (ref: Campbell OPECSystem manual)
        pfp_ts.FhvtoFh(cf, ds3)
        # correct the H2O & CO2 flux due to effects of flux on density measurements
        if pfp_ts.Fe_WPL(cf, ds3):
            return ds3
        if pfp_ts.Fco2_WPL(cf, ds3):
            return ds3
    # **************************
    # *** CO2 and Fc section ***
    # **************************
    # convert CO2 units if required
    pfp_utils.ConvertCO2Units(cf, ds3)
    # calculate Fco2 storage term - single height only at present
    pfp_ts.CalculateFco2StorageSinglePoint(cf, ds3, l3_info["CO2"]["label"])
    # convert Fco2 units if required
    pfp_utils.ConvertFco2Units(cf, ds3)
    # merge Fco2 and Fco2_storage series if required
    pfp_ts.CombineSeries(cf, ds3, l3_info["Fco2"]["combine_list"], save_originals=True)
    # correct Fco2 for storage term - only recommended if storage calculated from profile available
    pfp_ts.CorrectFco2ForStorage(cf, ds3)
    # *************************
    # *** Radiation section ***
    # *************************
    # merge the incoming shortwave radiation
    pfp_ts.CombineSeries(cf, ds3, "Fsd")
    # calculate the net radiation from the Kipp and Zonen CNR1
    pfp_ts.CalculateNetRadiation(cf, ds3)
    pfp_ts.CombineSeries(cf, ds3, "Fn")
    # ****************************************
    # *** Wind speed and direction section ***
    # ****************************************
    # combine wind speed from the Wind Sentry and the SONIC
    pfp_ts.CombineSeries(cf,ds3, "Ws")
    # combine wind direction from the Wind Sentry and the SONIC
    pfp_ts.CombineSeries(cf,ds3, "Wd")
    # ********************
    # *** Soil section ***
    # ********************
    # correct soil heat flux for storage
    #    ... either average the raw ground heat flux, soil temperature and moisture
    #        and then do the correction (OzFlux "standard")
    pfp_ts.CombineSeries(cf, ds3, "Ts")
    pfp_ts.CombineSeries(cf, ds3, "Sws")
    if pfp_utils.get_optionskeyaslogical(cf, "CorrectIndividualFg"):
        #    ... or correct the individual ground heat flux measurements (James' method)
        pfp_ts.CorrectIndividualFgForStorage(cf, ds3)
        pfp_ts.CombineSeries(cf, ds3, "Fg")
    else:
        pfp_ts.CombineSeries(cf, ds3, "Fg")
        pfp_ts.CorrectFgForStorage(cf, ds3)
    # calculate the available energy
    pfp_ts.CalculateAvailableEnergy(ds3)
    # create new series using MergeSeries or AverageSeries
    pfp_ck.CreateNewSeries(cf, ds3)
    # Calculate Monin-Obukhov length
    pfp_ts.CalculateMoninObukhovLength(ds3)
    # re-apply the quality control checks (range, diurnal and rules)
    pfp_ck.do_qcchecks(cf, ds3)
    # check missing data and QC flags are consistent
    pfp_utils.CheckQCFlags(ds3)
    # get the statistics for the QC flags and write these to an Excel spreadsheet
    pfp_io.get_seriesstats(cf, ds3)
    # write the percentage of good data as a variable attribute
    pfp_utils.get_coverage_individual(ds3)
    # write the percentage of good data for groups
    pfp_utils.get_coverage_groups(ds3)
    # remove intermediate series from the data structure
    pfp_ts.RemoveIntermediateSeries(ds3, l3_info)
    return ds3