コード例 #1
0
def MRfromRH(ds, MR_out, RH_in, Ta_in, ps_in):
    """
    Purpose:
     Calculate H2O mixing ratio from RH.
    """
    nRecs = int(ds.globalattributes["nc_nrecs"])
    zeros = numpy.zeros(nRecs, dtype=numpy.int32)
    ones = numpy.ones(nRecs, dtype=numpy.int32)
    for item in [RH_in, Ta_in, ps_in]:
        if item not in ds.series.keys():
            msg = " MRfromRH: Requested series " + item + " not found, " + MR_out + " not calculated"
            logger.error(msg)
            return 0
    if MR_out in ds.series.keys():
        msg = " MRfromRH: Output series " + MR_out + " already exists, skipping ..."
        logger.error(msg)
        return 0
    RH_data, RH_flag, RH_attr = pfp_utils.GetSeriesasMA(ds, RH_in)
    Ta_data, Ta_flag, Ta_attr = pfp_utils.GetSeriesasMA(ds, Ta_in)
    Ah_data = pfp_mf.absolutehumidityfromRH(Ta_data, RH_data)
    ps_data, ps_flag, ps_attr = pfp_utils.GetSeriesasMA(ds, ps_in)
    MR_data = pfp_mf.h2o_mmolpmolfromgpm3(Ah_data, Ta_data, ps_data)
    MR_attr = pfp_utils.MakeAttributeDictionary(
        long_name="H2O mixing ratio calculated from " + RH_in + ", " + Ta_in +
        " and " + ps_in,
        height=RH_attr["height"],
        units="mmol/mol")
    flag = numpy.where(numpy.ma.getmaskarray(MR_data) == True, ones, zeros)
    pfp_utils.CreateSeries(ds, MR_out, MR_data, flag, MR_attr)
    return 1
コード例 #2
0
def AhfromRH(ds, Ah_out, RH_in, Ta_in):
    """
    Purpose:
     Function to calculate absolute humidity given relative humidity and
     air temperature.  Absolute humidity is not calculated if any of the
     input series are missing or if the specified output series already
     exists in the data structure.
     The calculated absolute humidity is created as a new series in the
     data structure.
    Usage:
     pfp_func.AhfromRH(ds,"Ah_HMP_2m","RH_HMP_2m","Ta_HMP_2m")
    Author: PRI
    Date: September 2015
    """
    nRecs = int(ds.globalattributes["nc_nrecs"])
    zeros = numpy.zeros(nRecs,dtype=numpy.int32)
    ones = numpy.ones(nRecs,dtype=numpy.int32)
    for item in [RH_in,Ta_in]:
        if item not in ds.series.keys():
            msg = " AhfromRH: Requested series "+item+" not found, "+Ah_out+" not calculated"
            logger.error(msg)
            return 0
    if Ah_out in ds.series.keys():
        msg = " AhfromRH: Output series "+Ah_out+" already exists, skipping ..."
        logger.error(msg)
        return 0
    RH_data,RH_flag,RH_attr = pfp_utils.GetSeriesasMA(ds,RH_in)
    Ta_data,Ta_flag,Ta_attr = pfp_utils.GetSeriesasMA(ds,Ta_in)
    Ah_data = pfp_mf.absolutehumidityfromRH(Ta_data,RH_data)
    Ah_attr = pfp_utils.MakeAttributeDictionary(long_name="Absolute humidity calculated from "+RH_in+" and "+Ta_in,
                                              height=RH_attr["height"],
                                              units="g/m3")
    flag = numpy.where(numpy.ma.getmaskarray(Ah_data)==True,ones,zeros)
    pfp_utils.CreateSeries(ds,Ah_out,Ah_data,flag,Ah_attr)
    return 1
コード例 #3
0
def AhfromMR(ds, Ah_out, MR_in, Ta_in, ps_in):
    """
    Purpose:
     Function to calculate absolute humidity given the water vapour mixing
     ratio, air temperature and pressure.  Absolute humidity is not calculated
     if any of the input series are missing or if the specified output series
     already exists in the data structure.
     The calculated absolute humidity is created as a new series in the
     data structure.
    Usage:
     pfp_func.AhfromMR(ds,"Ah_IRGA_Av","H2O_IRGA_Av","Ta_HMP_2m","ps")
    Author: PRI
    Date: September 2015
    """
    nRecs = int(ds.globalattributes["nc_nrecs"])
    zeros = numpy.zeros(nRecs, dtype=numpy.int32)
    ones = numpy.ones(nRecs, dtype=numpy.int32)
    for item in [MR_in, Ta_in, ps_in]:
        if item not in ds.series.keys():
            msg = " AhfromMR: Requested series " + item + " not found, " + Ah_out + " not calculated"
            logger.error(msg)
            return 0
    if Ah_out in ds.series.keys():
        msg = " AhfromMR: Output series " + Ah_out + " already exists, skipping ..."
        logger.error(msg)
        return 0
    MR_data, MR_flag, MR_attr = pfp_utils.GetSeriesasMA(ds, MR_in)
    Ta_data, Ta_flag, Ta_attr = pfp_utils.GetSeriesasMA(ds, Ta_in)
    ps_data, ps_flag, ps_attr = pfp_utils.GetSeriesasMA(ds, ps_in)
    Ah_data = pfp_mf.h2o_gpm3frommmolpmol(MR_data, Ta_data, ps_data)
    long_name = "Absolute humidity calculated from " + MR_in + ", " + Ta_in + " and " + ps_in
    Ah_attr = pfp_utils.MakeAttributeDictionary(long_name=long_name,
                                                height=MR_attr["height"],
                                                units="g/m3")
    flag = numpy.where(numpy.ma.getmaskarray(Ah_data) == True, ones, zeros)
    pfp_utils.CreateSeries(ds, Ah_out, Ah_data, flag, Ah_attr)
    return 1
コード例 #4
0
ファイル: modis_evi2nc.py プロジェクト: mdekauwe/PyFluxPro-1
# remove any daylight saving adjustments (towers run on standard time)
dt_loc = [x - x.dst() for x in dt_loc]
# strip the time zone from the local datetime series
dt_loc = [x.replace(tzinfo=None) for x in dt_loc]
ds.series["DateTime"]["Data"] = dt_loc
# update global attributes
ds.globalattributes["nc_nrecs"] = len(dt_loc)
ds.globalattributes["start_datetime"] = str(dt_loc[0])
ds.globalattributes["end_datetime"] = str(dt_loc[-1])
# put the QC'd, smoothed and interpolated EVI into the data structure
flag = numpy.zeros(len(dt_loc), dtype=numpy.int32)
attr = pfp_utils.MakeAttributeDictionary(
    long_name="MODIS EVI, smoothed and interpolated",
    units="none",
    horiz_resolution="250m",
    cutout_size=str(3),
    evi_min=str(evi_min),
    evi_max=str(evi_max),
    sg_num_points=str(sgnp),
    sg_order=str(sgo))
pfp_utils.CreateSeries(ds, "EVI", evi_ts["smoothed"], flag, attr)

attr = pfp_utils.MakeAttributeDictionary(long_name="MODIS EVI, interpolated",
                                         units="none",
                                         horiz_resolution="250m",
                                         cutout_size=str(3),
                                         evi_min=str(evi_min),
                                         evi_max=str(evi_max))
pfp_utils.CreateSeries(ds, "EVI_notsmoothed", evi_ts["mean"], flag, attr)
# now write the data structure to a netCDF file
out_name = os.path.join(cf["Files"]["base_path"], site, "Data", "MODIS",
コード例 #5
0
ファイル: pfp_ck.py プロジェクト: OzFlux/PFP_Classic
def ApplyTurbulenceFilter(cf, ds, ustar_threshold=None):
    """
    Purpose:
    Usage:
    Author:
    Date:
    """
    opt = ApplyTurbulenceFilter_checks(cf, ds)
    if not opt["OK"]: return
    # local point to datetime series
    ldt = ds.series["DateTime"]["Data"]
    # time step
    ts = int(ds.globalattributes["time_step"])
    # dictionary of utar thresold values
    if ustar_threshold == None:
        ustar_dict = pfp_rp.get_ustar_thresholds(cf, ldt)
    else:
        ustar_dict = pfp_rp.get_ustar_thresholds_annual(ldt, ustar_threshold)
    # initialise a dictionary for the indicator series
    indicators = {}
    # get data for the indicator series
    ustar, ustar_flag, ustar_attr = pfp_utils.GetSeriesasMA(ds, "ustar")
    Fsd, f, a = pfp_utils.GetSeriesasMA(ds, "Fsd")
    if "solar_altitude" not in ds.series.keys():
        pfp_ts.get_synthetic_fsd(ds)
    Fsd_syn, f, a = pfp_utils.GetSeriesasMA(ds, "Fsd_syn")
    sa, f, a = pfp_utils.GetSeriesasMA(ds, "solar_altitude")
    # get the day/night indicator series
    # indicators["day"] = 1 ==> day time, indicators["day"] = 0 ==> night time
    indicators["day"] = pfp_rp.get_day_indicator(cf, Fsd, Fsd_syn, sa)
    ind_day = indicators["day"]["values"]
    # get the turbulence indicator series
    if opt["turbulence_filter"].lower() == "ustar":
        # indicators["turbulence"] = 1 ==> turbulent, indicators["turbulence"] = 0 ==> not turbulent
        indicators["turbulence"] = pfp_rp.get_turbulence_indicator_ustar(
            ldt, ustar, ustar_dict, ts)
    elif opt["turbulence_filter"].lower() == "ustar_evg":
        # ustar >= threshold ==> ind_ustar = 1, ustar < threshold == ind_ustar = 0
        indicators["ustar"] = pfp_rp.get_turbulence_indicator_ustar(
            ldt, ustar, ustar_dict, ts)
        ind_ustar = indicators["ustar"]["values"]
        # ustar >= threshold during day AND ustar has been >= threshold since sunset ==> indicators["turbulence"] = 1
        # indicators["turbulence"] = 0 during night once ustar has dropped below threshold even if it
        # increases above the threshold later in the night
        indicators["turbulence"] = pfp_rp.get_turbulence_indicator_ustar_evg(
            ldt, ind_day, ind_ustar, ustar, ustar_dict, ts)
    elif opt["turbulence_filter"].lower() == "l":
        #indicators["turbulence] = get_turbulence_indicator_l(ldt,L,z,d,zmdonL_threshold)
        indicators["turbulence"] = numpy.ones(len(ldt))
        msg = " Use of L as turbulence indicator not implemented, no filter applied"
        logger.warning(msg)
    else:
        msg = " Unrecognised turbulence filter option ("
        msg = msg + opt["turbulence_filter"] + "), no filter applied"
        logger.error(msg)
        return
    # initialise the final indicator series as the turbulence indicator
    # subsequent filters will modify the final indicator series
    # we must use copy.deepcopy() otherwise the "values" array will only
    # be copied by reference not value.  Damn Python's default of copy by reference!
    indicators["final"] = copy.deepcopy(indicators["turbulence"])
    # check to see if the user wants to accept all day time observations
    # regardless of ustar value
    if opt["accept_day_times"].lower() == "yes":
        # if yes, then we force the final indicator to be 1
        # if ustar is below the threshold during the day.
        idx = numpy.where(indicators["day"]["values"] == 1)[0]
        indicators["final"]["values"][idx] = numpy.int(1)
        indicators["final"]["attr"].update(indicators["day"]["attr"])
    # get the evening indicator series
    indicators["evening"] = pfp_rp.get_evening_indicator(
        cf, Fsd, Fsd_syn, sa, ts)
    indicators["dayevening"] = {
        "values": indicators["day"]["values"] + indicators["evening"]["values"]
    }
    indicators["dayevening"]["attr"] = indicators["day"]["attr"].copy()
    indicators["dayevening"]["attr"].update(indicators["evening"]["attr"])
    if opt["use_evening_filter"].lower() == "yes":
        idx = numpy.where(indicators["dayevening"]["values"] == 0)[0]
        indicators["final"]["values"][idx] = numpy.int(0)
        indicators["final"]["attr"].update(indicators["dayevening"]["attr"])
    # save the indicator series
    ind_flag = numpy.zeros(len(ldt))
    long_name = "Turbulence indicator, 1 for turbulent, 0 for non-turbulent"
    ind_attr = pfp_utils.MakeAttributeDictionary(long_name=long_name,
                                                 units="None")
    pfp_utils.CreateSeries(ds, "turbulence_indicator",
                           indicators["turbulence"]["values"], ind_flag,
                           ind_attr)
    long_name = "Day indicator, 1 for day time, 0 for night time"
    ind_attr = pfp_utils.MakeAttributeDictionary(long_name=long_name,
                                                 units="None")
    pfp_utils.CreateSeries(ds, "day_indicator", indicators["day"]["values"],
                           ind_flag, ind_attr)
    long_name = "Evening indicator, 1 for evening, 0 for not evening"
    ind_attr = pfp_utils.MakeAttributeDictionary(long_name=long_name,
                                                 units="None")
    pfp_utils.CreateSeries(ds, "evening_indicator",
                           indicators["evening"]["values"], ind_flag, ind_attr)
    long_name = "Day/evening indicator, 1 for day/evening, 0 for not day/evening"
    ind_attr = pfp_utils.MakeAttributeDictionary(long_name=long_name,
                                                 units="None")
    pfp_utils.CreateSeries(ds, "dayevening_indicator",
                           indicators["dayevening"]["values"], ind_flag,
                           ind_attr)
    long_name = "Final indicator, 1 for use data, 0 for don't use data"
    ind_attr = pfp_utils.MakeAttributeDictionary(long_name=long_name,
                                                 units="None")
    pfp_utils.CreateSeries(ds, "final_indicator",
                           indicators["final"]["values"], ind_flag, ind_attr)
    # loop over the series to be filtered
    for series in opt["filter_list"]:
        msg = " Applying " + opt["turbulence_filter"] + " filter to " + series
        logger.info(msg)
        # get the data
        data, flag, attr = pfp_utils.GetSeriesasMA(ds, series)
        # continue to next series if this series has been filtered before
        if "turbulence_filter" in attr:
            msg = " Series " + series + " has already been filtered, skipping ..."
            logger.warning(msg)
            continue
        # save the non-filtered data
        pfp_utils.CreateSeries(ds, series + "_nofilter", data, flag, attr)
        # now apply the filter
        data_filtered = numpy.ma.masked_where(
            indicators["final"]["values"] == 0, data, copy=True)
        flag_filtered = numpy.copy(flag)
        idx = numpy.where(indicators["final"]["values"] == 0)[0]
        flag_filtered[idx] = numpy.int32(61)
        # update the series attributes
        for item in indicators["final"]["attr"].keys():
            attr[item] = indicators["final"]["attr"][item]
        # and write the filtered data to the data structure
        pfp_utils.CreateSeries(ds, series, data_filtered, flag_filtered, attr)
        # and write a copy of the filtered datas to the data structure so it
        # will still exist once the gap filling has been done
        pfp_utils.CreateSeries(ds, series + "_filtered", data_filtered,
                               flag_filtered, attr)
    return
コード例 #6
0
        # get the Akima interpolator function
        int_fn = scipy.interpolate.Akima1DInterpolator(era5_time_1hr, coef_1hr)
        # get the coefficient at the tower time step
        coef_tts = int_fn(era5_time_tts)

        # ==== old = UnivariateSpline ====
        # get the spline interpolation function
        #s = InterpolatedUnivariateSpline(era5_time_1hr, coef_1hr, k=1)
        # get the coefficient at the tower time step
        #coef_tts = s(era5_time_tts)

        # get the downwelling solar radiation at the tower time step
        Fsd_era5_tts = coef_tts * numpy.sin(numpy.deg2rad(alt_solar_tts))
        flag = numpy.zeros(len(Fsd_era5_tts), dtype=numpy.int32)
        attr = pfp_utils.MakeAttributeDictionary(
            long_name="Downwelling short wave radiation", units="W/m2")
        pfp_utils.CreateSeries(ds_era5, "Fsd", Fsd_era5_tts, flag, attr)

        # === NET-SHORTWAVE Fn_sw === #
        # Interpolate the 1 hourly accumulated net shortwave to the tower time step
        # NOTE: ERA-5 variables are dimensioned [time,latitude,longitude]
        Fn_sw_3d = era5_file.variables["ssr"][:, :, :]
        Fn_sw_accum = Fn_sw_3d[:, site_lat_index, site_lon_index]
        # Net shortwave in ERA-5 is a cummulative value that is reset to 0 at 0300 and 1500 UTC.
        # Here we convert the cummulative values to 3 hourly values.
        #Fn_sw_era5_1hr = numpy.ediff1d(Fn_sw_accum,to_begin=0)
        # deal with the reset times at 0300 and 1500
        #idx = numpy.where((hour_utc==3)|(hour_utc==15))[0]
        #Fn_sw_era5_1hr[idx] = Fn_sw_accum[idx]
        # get the average value over the 1 hourly period
        #Fn_sw_era5_1hr = Fn_sw_era5_1hr/(era5_timestep*60)