コード例 #1
0
ファイル: test_trpo.py プロジェクト: tkelestemur/pfrl
def compute_hessian(y, params):
    grads = torch.autograd.grad([y], params, create_graph=True)
    flat_grads = trpo._flatten_and_concat_variables(grads)
    hessian_rows = []
    for i in range(len(flat_grads)):
        ggrads = torch.autograd.grad([flat_grads[i]], params, retain_graph=True)
        assert all(ggrad is not None for ggrad in ggrads)
        flat_ggrads_data = trpo._flatten_and_concat_variables(ggrads).detach()
        hessian_rows.append(flat_ggrads_data)
    return torch.stack(hessian_rows)
コード例 #2
0
ファイル: test_trpo.py プロジェクト: tkelestemur/pfrl
def compute_hessian_vector_product(y, params, vec):
    grads = torch.autograd.grad([y], params, create_graph=True)
    flat_grads = trpo._flatten_and_concat_variables(grads)
    return trpo._hessian_vector_product(flat_grads, params, vec)