コード例 #1
0
 def test_get_assertions(self):
     self.Independencies1 = Independencies(["X", "Y", "Z"])
     self.assertEqual(self.Independencies1.independencies,
                      self.Independencies1.get_assertions())
     self.Independencies2 = Independencies(["A", "B", "C"], ["D", "E", "F"])
     self.assertEqual(self.Independencies2.independencies,
                      self.Independencies2.get_assertions())
コード例 #2
0
    def local_independencies(self, variables):
        """
        Returns an instance of Independencies containing the local independencies
        of each of the variables.


        Parameters
        ----------
        variables: str or array like
            variables whose local independencies are to found.

        Examples
        --------
        >>> from pgmpy.models import NaiveBayes
        >>> model = NaiveBayes()
        >>> model.add_edges_from([('a', 'b'), ('a', 'c'), ('a', 'd')])
        >>> ind = model.local_independencies('b')
        >>> ind
        (b _|_ d, c | a)
        """
        independencies = Independencies()
        for variable in [variables] if isinstance(variables,
                                                  str) else variables:
            if variable != self.parent_node:
                independencies.add_assertions([
                    variable,
                    list(set(self.children_nodes) - set(variable)),
                    self.parent_node
                ])
        return independencies
コード例 #3
0
    def get_independencies(self, condition=None):
        """
        Returns the independent variables in the joint probability distribution.
        Returns marginally independent variables if condition=None.
        Returns conditionally independent variables if condition!=None

        Parameter
        ---------
        condition: array_like
                Random Variable on which to condition the Joint Probability Distribution.

        Examples
        --------
        >>> import numpy as np
        >>> from pgmpy.factors import JointProbabilityDistribution
        >>> prob = JointProbabilityDistribution(['x1', 'x2', 'x3'], [2, 3, 2], np.ones(12)/12)
        >>> prob.get_independencies()
        (x1 _|_ x2)
        (x1 _|_ x3)
        (x2 _|_ x3)
        """
        JPD = self.copy()
        if condition:
            JPD.conditional_distribution(condition)
        independencies = Independencies()
        for variable_pair in itertools.combinations(list(JPD.variables), 2):
            if (JPD.marginal_distribution(
                    variable_pair, inplace=False) == JPD.marginal_distribution(
                        variable_pair[0], inplace=False) *
                    JPD.marginal_distribution(variable_pair[1],
                                              inplace=False)):
                independencies.add_assertions(variable_pair)
        return independencies
コード例 #4
0
 def test_get_independencies(self):
     chain = BayesianModel([('X', 'Y'), ('Y', 'Z')])
     self.assertEqual(chain.get_independencies(), Independencies(('X', 'Z', 'Y'), ('Z', 'X', 'Y')))
     fork = BayesianModel([('Y', 'X'), ('Y', 'Z')])
     self.assertEqual(fork.get_independencies(), Independencies(('X', 'Z', 'Y'), ('Z', 'X', 'Y')))
     collider = BayesianModel([('X', 'Y'), ('Z', 'Y')])
     self.assertEqual(collider.get_independencies(), Independencies(('X', 'Z'), ('Z', 'X')))
コード例 #5
0
    def get_independencies(self, condition=None):
        """
        Returns the independent variables in the joint probability distribution.
        Returns marginally independent variables if condition=None.
        Returns conditionally independent variables if condition!=None

        Parameter
        ---------
        condition: array_like
                Random Variable on which to condition the Joint Probability Distribution.

        Examples
        --------
        >>> from pgmpy.factors import JointProbabilityDistribution
        >>> prob = JointProbabilityDistribution(['x1', 'x2', 'x3'], [2, 3, 2], np.ones(8)/8)
        >>> prob.get_independencies()
        """
        if condition:
            self.conditional_distribution(condition)
        independencies = Independencies()
        from itertools import combinations
        for variable_pair in combinations(list(self.variables), 2):
            from copy import deepcopy
            if JointProbabilityDistribution.marginal_distribution(deepcopy(self), variable_pair) == \
                    JointProbabilityDistribution.marginal_distribution(deepcopy(self), variable_pair[0]) * \
                    JointProbabilityDistribution.marginal_distribution(deepcopy(self), variable_pair[1]):
                independencies.add_assertions(variable_pair)
        return independencies
コード例 #6
0
    def get_independencies(self, condition=None):
        """
        Returns the independent variables in the joint probability distribution.
        Returns marginally independent variables if condition=None.
        Returns conditionally independent variables if condition!=None

        Parameter
        ---------
        condition: array_like
                Random Variable on which to condition the Joint Probability Distribution.

        Examples
        --------
        >>> import numpy as np
        >>> from pgmpy.factors import JointProbabilityDistribution
        >>> prob = JointProbabilityDistribution(['x1', 'x2', 'x3'], [2, 3, 2], np.ones(12)/12)
        >>> prob.get_independencies()
        (x1 _|_ x2)
        (x1 _|_ x3)
        (x2 _|_ x3)
        """
        JPD = self.copy()
        if condition:
            JPD.conditional_distribution(condition)
        independencies = Independencies()
        for variable_pair in itertools.combinations(list(JPD.variables), 2):
            if (JPD.marginal_distribution(variable_pair, inplace=False) ==
                    JPD.marginal_distribution(variable_pair[0], inplace=False) *
                    JPD.marginal_distribution(variable_pair[1], inplace=False)):
                independencies.add_assertions(variable_pair)
        return independencies
コード例 #7
0
 def test_get_assertions(self):
     self.Independencies1 = Independencies(['X', 'Y', 'Z'])
     self.assertEqual(self.Independencies1.independencies,
                      self.Independencies1.get_assertions())
     self.Independencies2 = Independencies(['A', 'B', 'C'], ['D', 'E', 'F'])
     self.assertEqual(self.Independencies2.independencies,
                      self.Independencies2.get_assertions())
コード例 #8
0
    def test_build_skeleton(self):
        ind = Independencies(['B', 'C'], ['A', ['B', 'C'], 'D'])
        ind = ind.closure()
        skel1, sep_sets1 = ConstraintBasedEstimator.build_skeleton("ABCD", ind)
        self.assertTrue(
            self._edge_list_equal(skel1.edges(), [('A', 'D'), ('B', 'D'),
                                                  ('C', 'D')]))

        sep_sets_ref1 = {
            frozenset({'A', 'C'}): (),
            frozenset({'A', 'B'}): (),
            frozenset({'C', 'B'}): ()
        }
        self.assertEqual(sep_sets1, sep_sets_ref1)

        model = BayesianModel([('A', 'C'), ('B', 'C'), ('B', 'D'), ('C', 'E')])
        skel2, sep_sets2 = ConstraintBasedEstimator.build_skeleton(
            model.nodes(), model.get_independencies())
        self.assertTrue(
            self._edge_list_equal(skel2, [('D', 'B'), ('A', 'C'), ('B', 'C'),
                                          ('C', 'E')]))

        sep_sets_ref2 = {
            frozenset({'D', 'C'}): ('B', ),
            frozenset({'E', 'B'}): ('C', ),
            frozenset({'A', 'D'}): (),
            frozenset({'E', 'D'}): ('C', ),
            frozenset({'E', 'A'}): ('C', ),
            frozenset({'A', 'B'}): ()
        }
        # witnesses/seperators might change on each run, so we cannot compare directly
        self.assertEqual(sep_sets2.keys(), sep_sets_ref2.keys())
        self.assertEqual([len(v) for v in sorted(sep_sets2.values())],
                         [len(v) for v in sorted(sep_sets_ref2.values())])
コード例 #9
0
    def get_independencies(self, condition=None):
        """
        Returns the independent variables in the joint probability distribution.
        Returns marginally independent variables if condition=None.
        Returns conditionally independent variables if condition!=None

        Parameter
        ---------
        condition: array_like
                Random Variable on which to condition the Joint Probability Distribution.

        Examples
        --------
        >>> from pgmpy.factors import JointProbabilityDistribution
        >>> prob = JointProbabilityDistribution(['x1', 'x2', 'x3'], [2, 3, 2], np.ones(8)/8)
        >>> prob.get_independencies()
        """
        if condition:
            self.conditional_distribution(condition)
        independencies = Independencies()
        from itertools import combinations
        for variable_pair in combinations(list(self.variables), 2):
            from copy import deepcopy
            if JointProbabilityDistribution.marginal_distribution(deepcopy(self), variable_pair) == \
                    JointProbabilityDistribution.marginal_distribution(deepcopy(self), variable_pair[0]) * \
                    JointProbabilityDistribution.marginal_distribution(deepcopy(self), variable_pair[1]):
                independencies.add_assertions(variable_pair)
        return independencies
コード例 #10
0
ファイル: test_Factor.py プロジェクト: cfm25/pgmpy
 def test_get_independencies(self):
     independencies = Independencies(['x1', 'x2'], ['x2', 'x3'], ['x3', 'x1'])
     independencies1 = Independencies(['x1', 'x2'])
     self.assertEqual(self.jpd1.get_independencies(), independencies)
     self.assertEqual(self.jpd2.get_independencies(), independencies1)
     self.assertEqual(self.jpd1.get_independencies([('x3', 0)]), independencies1)
     self.assertEqual(self.jpd2.get_independencies([('x3', 0)]), Independencies())
コード例 #11
0
    def local_independencies(self, variables):
        """
        Returns an instance of Independencies containing the local independencies
        of each of the variables.


        Parameters
        ----------
        variables: str or array like
            variables whose local independencies are to found.

        Examples
        --------
        >>> from pgmpy.models import NaiveBayes
        >>> model = NaiveBayes()
        >>> model.add_edges_from([('a', 'b'), ('a', 'c'), ('a', 'd')])
        >>> ind = model.local_independencies('b')
        >>> ind
        (b _|_ d, c | a)
        """
        independencies = Independencies()
        for variable in [variables] if isinstance(variables, str) else variables:
            if variable != self.parent_node:
                independencies.add_assertions([variable, list(set(self.children_nodes) - set(variable)), self.parent_node])
        return independencies
コード例 #12
0
ファイル: test_NaiveBayes.py プロジェクト: studosi-fer/STRUCE
 def test_local_independencies(self):
     self.assertEqual(self.G1.local_independencies('a'), Independencies())
     self.assertEqual(self.G1.local_independencies('b'),
                      Independencies(['b', ['e', 'c', 'd'], 'a']))
     self.assertEqual(self.G1.local_independencies('c'),
                      Independencies(['c', ['e', 'b', 'd'], 'a']))
     self.assertEqual(self.G1.local_independencies('d'),
                      Independencies(['d', ['b', 'c', 'e'], 'a']))
コード例 #13
0
 def test_local_independencies(self):
     self.assertListEqual(self.G1.local_independencies('a'), [None])
     self.assertListEqual(self.G1.local_independencies('b'),
                          [Independencies(['b', ['e', 'c', 'd'], 'a'])])
     self.assertListEqual(self.G1.local_independencies('c'),
                          [Independencies(['c', ['e', 'b', 'd'], 'a'])])
     self.assertListEqual(self.G1.local_independencies('d'),
                          [Independencies(['d', ['b', 'c', 'e'], 'a'])])
コード例 #14
0
 def test_get_independencies(self):
     chain = BayesianModel([("X", "Y"), ("Y", "Z")])
     self.assertEqual(chain.get_independencies(),
                      Independencies(("X", "Z", "Y"), ("Z", "X", "Y")))
     fork = BayesianModel([("Y", "X"), ("Y", "Z")])
     self.assertEqual(fork.get_independencies(),
                      Independencies(("X", "Z", "Y"), ("Z", "X", "Y")))
     collider = BayesianModel([("X", "Y"), ("Z", "Y")])
     self.assertEqual(collider.get_independencies(),
                      Independencies(("X", "Z"), ("Z", "X")))
コード例 #15
0
 def setUp(self):
     self.Independencies = Independencies()
     self.Independencies3 = Independencies(
         ["a", ["b", "c", "d"], ["e", "f", "g"]],
         ["c", ["d", "e", "f"], ["g", "h"]])
     self.Independencies4 = Independencies(
         [["f", "d", "e"], "c", ["h", "g"]],
         [["b", "c", "d"], "a", ["f", "g", "e"]])
     self.Independencies5 = Independencies(
         ["a", ["b", "c", "d"], ["e", "f", "g"]],
         ["c", ["d", "e", "f"], "g"])
コード例 #16
0
 def setUp(self):
     self.Independencies = Independencies()
     self.Independencies3 = Independencies(
         ['a', ['b', 'c', 'd'], ['e', 'f', 'g']],
         ['c', ['d', 'e', 'f'], ['g', 'h']])
     self.Independencies4 = Independencies(
         [['f', 'd', 'e'], 'c', ['h', 'g']],
         [['b', 'c', 'd'], 'a', ['f', 'g', 'e']])
     self.Independencies5 = Independencies(
         ['a', ['b', 'c', 'd'], ['e', 'f', 'g']],
         ['c', ['d', 'e', 'f'], 'g'])
コード例 #17
0
ファイル: BayesianModel.py プロジェクト: EJHortala/books-2
    def local_independencies(self, variables):
        """
        Returns a independencies object containing the local independencies
        of each of the variables.

        Parameters
        ----------
        variables: str or array like
            variables whose local independencies are to found.

        Examples
        --------
        >>> from pgmpy.models import BayesianModel
        >>> student = BayesianModel()
        >>> student.add_edges_from([('diff', 'grade'), ('intel', 'grade'),
        >>>                         ('grade', 'letter'), ('intel', 'SAT')])
        >>> ind = student.local_independencies('grade')
        >>> ind.event1
        {'grade'}
        >>> ind.event2
        {'SAT'}
        >>> ind.event3
        {'diff', 'intel'}
        """
        def dfs(node):
            """
            Returns the descendents of node.

            Since there can't be any cycles in the Bayesian Network. This is a
            very simple dfs which doen't remember which nodes it has visited.
            """
            descendents = []
            visit = [node]
            while visit:
                n = visit.pop()
                neighbors = self.neighbors(n)
                visit.extend(neighbors)
                descendents.extend(neighbors)
            return descendents

        from pgmpy.independencies import Independencies
        independencies = Independencies()
        for variable in [variables] if isinstance(variables,
                                                  str) else variables:
            independencies.add_assertions([
                variable,
                set(self.nodes()) - set(dfs(variable)) -
                set(self.get_parents(variable)) - {variable},
                set(self.get_parents(variable))
            ])
        return independencies
コード例 #18
0
 def test_local_independencies(self):
     self.assertEqual(self.G1.local_independencies("a"), Independencies())
     self.assertEqual(
         self.G1.local_independencies("b"),
         Independencies(["b", ["e", "c", "d"], "a"]),
     )
     self.assertEqual(
         self.G1.local_independencies("c"),
         Independencies(["c", ["e", "b", "d"], "a"]),
     )
     self.assertEqual(
         self.G1.local_independencies("d"),
         Independencies(["d", ["b", "c", "e"], "a"]),
     )
コード例 #19
0
    def test_estimate_from_independencies(self):
        ind = Independencies(['B', 'C'], ['A', ['B', 'C'], 'D'])
        ind = ind.closure()
        model = ConstraintBasedEstimator.estimate_from_independencies("ABCD", ind)

        self.assertSetEqual(set(model.edges()),
                            set([('B', 'D'), ('A', 'D'), ('C', 'D')]))

        model1 = BayesianModel([('A', 'C'), ('B', 'C'), ('B', 'D'), ('C', 'E')])
        model2 = ConstraintBasedEstimator.estimate_from_independencies(
                            model1.nodes(),
                            model1.get_independencies())

        self.assertTrue(set(model2.edges()) == set(model1.edges()) or
                        set(model2.edges()) == set([('B', 'C'), ('A', 'C'), ('C', 'E'), ('D', 'B')]))
コード例 #20
0
 def test_entails(self):
     ind1 = Independencies([['A', 'B'], ['C', 'D'], 'E'])
     ind2 = Independencies(['A', 'C', 'E'])
     self.assertTrue(ind1.entails(ind2))
     self.assertFalse(ind2.entails(ind1))
     ind3 = Independencies(('W', ['X', 'Y', 'Z']))
     self.assertTrue(ind3.entails(ind3.closure()))
     self.assertTrue(ind3.closure().entails(ind3))
コード例 #21
0
ファイル: NaiveBayes.py プロジェクト: thanhdat285/Project4
    def local_independencies(self, variables):
        """
        Returns a list of independencies objects containing the local independencies
        of each of the variables. If local independencies does not exist for a variable
        it gives a None for that variable.


        Parameters
        ----------
        variables: str or array like
            variables whose local independencies are to found.

        Examples
        --------
        >>> from pgmpy.models import NaiveBayes
        >>> model = NaiveBayes()
        >>> model.add_edges_from([('a', 'b'), ('a', 'c'), ('a', 'd')])
        >>> ind = model.local_independencies('b')
        >>> ind
        [(b _|_ d, c | a)]
        """
        independencies = []
        for variable in [variables] if isinstance(variables,
                                                  str) else variables:
            if variable != self.parent_node:
                independencies.append(
                    Independencies([
                        variable,
                        list(set(self.children_nodes) - set(variable)),
                        self.parent_node
                    ]))
            else:
                independencies.append(None)
        return independencies
コード例 #22
0
    def local_independencies(self, variables):
        """
        Returns an instance of Independencies containing the local independencies
        of each of the variables.

        Parameters
        ----------
        variables: str or array like
            variables whose local independencies are to be found.

        Examples
        --------
        >>> from pgmpy.models import BayesianModel
        >>> student = BayesianModel()
        >>> student.add_edges_from([('diff', 'grade'), ('intel', 'grade'),
        >>>                         ('grade', 'letter'), ('intel', 'SAT')])
        >>> ind = student.local_independencies('grade')
        >>> ind
        (grade _|_ SAT | diff, intel)
        """
        def dfs(node):
            """
            Returns the descendents of node.

            Since Bayesian Networks are acyclic, this is a very simple dfs
            which does not remember which nodes it has visited.
            """
            descendents = []
            visit = [node]
            while visit:
                n = visit.pop()
                neighbors = self.neighbors(n)
                visit.extend(neighbors)
                descendents.extend(neighbors)
            return descendents

        independencies = Independencies()
        for variable in variables if isinstance(variables,
                                                (list,
                                                 tuple)) else [variables]:
            non_descendents = set(self.nodes()) - {variable} - set(
                dfs(variable))
            parents = set(self.get_parents(variable))
            if non_descendents - parents:
                independencies.add_assertions(
                    [variable, non_descendents - parents, parents])
        return independencies
コード例 #23
0
ファイル: BayesianModel.py プロジェクト: infoburp/pgmpy
    def local_independencies(self, variables):
        """
        Returns a independencies object containing the local independencies
        of each of the variables.

        Parameters
        ----------
        variables: str or array like
            variables whose local independencies are to found.

        Examples
        --------
        >>> from pgmpy.models import BayesianModel
        >>> student = BayesianModel()
        >>> student.add_edges_from([('diff', 'grade'), ('intel', 'grade'),
        >>>                         ('grade', 'letter'), ('intel', 'SAT')])
        >>> ind = student.local_independencies('grade')
        >>> ind.event1
        {'grade'}
        >>> ind.event2
        {'SAT'}
        >>> ind.event3
        {'diff', 'intel'}
        """
        def dfs(node):
            """
            Returns the descendents of node.

            Since there can't be any cycles in the Bayesian Network. This is a
            very simple dfs which doen't remember which nodes it has visited.
            """
            descendents = []
            visit = [node]
            while visit:
                n = visit.pop()
                neighbors = self.neighbors(n)
                visit.extend(neighbors)
                descendents.extend(neighbors)
            return descendents

        from pgmpy.independencies import Independencies
        independencies = Independencies()
        for variable in [variables] if isinstance(variables, str) else variables:
            independencies.add_assertions([variable, set(self.nodes()) - set(dfs(variable)) -
                                           set(self.get_parents(variable)) - {variable},
                                           set(self.get_parents(variable))])
        return independencies
コード例 #24
0
    def get_independencies(self, latex=False):
        """
        Computes independencies in the Bayesian Network, by checking d-seperation.

        Parameters
        ----------
        latex: boolean
            If latex=True then latex string of the independence assertion
            would be created.

        Examples
        --------
        >>> from pgmpy.models import BayesianModel
        >>> chain = BayesianModel([('X', 'Y'), ('Y', 'Z')])
        >>> chain.get_independencies()
        (X _|_ Z | Y)
        (Z _|_ X | Y)
        """
        independencies = Independencies()
        for start in (self.nodes()):
            rest = set(self.nodes()) - {start}
            for r in range(len(rest)):
                for observed in itertools.combinations(rest, r):
                    d_seperated_variables = rest - set(observed) - set(
                        self.active_trail_nodes(start, observed=observed))
                    if d_seperated_variables:
                        independencies.add_assertions(
                            [start, d_seperated_variables, observed])

        independencies.reduce()

        if not latex:
            return independencies
        else:
            return independencies.latex_string()
コード例 #25
0
    def test_estimate_from_independencies(self):
        ind = Independencies(['B', 'C'], ['A', ['B', 'C'], 'D'])
        ind = ind.closure()
        model = ConstraintBasedEstimator.estimate_from_independencies(
            "ABCD", ind)

        self.assertSetEqual(set(model.edges()),
                            set([('B', 'D'), ('A', 'D'), ('C', 'D')]))

        model1 = BayesianModel([('A', 'C'), ('B', 'C'), ('B', 'D'),
                                ('C', 'E')])
        model2 = ConstraintBasedEstimator.estimate_from_independencies(
            model1.nodes(), model1.get_independencies())

        self.assertTrue(
            set(model2.edges()) == set(model1.edges())
            or set(model2.edges()) == set([('B', 'C'), ('A', 'C'), ('C', 'E'),
                                           ('D', 'B')]))
    def test_estimate_from_independencies(self):
        ind = Independencies(["B", "C"], ["A", ["B", "C"], "D"])
        ind = ind.closure()
        model = ConstraintBasedEstimator.estimate_from_independencies(
            "ABCD", ind)

        self.assertSetEqual(set(model.edges()),
                            set([("B", "D"), ("A", "D"), ("C", "D")]))

        model1 = BayesianModel([("A", "C"), ("B", "C"), ("B", "D"),
                                ("C", "E")])
        model2 = ConstraintBasedEstimator.estimate_from_independencies(
            model1.nodes(), model1.get_independencies())

        self.assertTrue(
            set(model2.edges()) == set(model1.edges())
            or set(model2.edges()) == set([("B", "C"), ("A", "C"), ("C", "E"),
                                           ("D", "B")]))
コード例 #27
0
    def local_independencies(self, variables):
        """
        Returns an instance of Independencies containing the local independencies
        of each of the variables.

        Parameters
        ----------
        variables: str or array like
            variables whose local independencies are to be found.

        Examples
        --------
        >>> from pgmpy.models import BayesianModel
        >>> student = BayesianModel()
        >>> student.add_edges_from([('diff', 'grade'), ('intel', 'grade'),
        >>>                         ('grade', 'letter'), ('intel', 'SAT')])
        >>> ind = student.local_independencies('grade')
        >>> ind
        (grade _|_ SAT | diff, intel)
        """
        def dfs(node):
            """
            Returns the descendents of node.

            Since Bayesian Networks are acyclic, this is a very simple dfs
            which does not remember which nodes it has visited.
            """
            descendents = []
            visit = [node]
            while visit:
                n = visit.pop()
                neighbors = self.neighbors(n)
                visit.extend(neighbors)
                descendents.extend(neighbors)
            return descendents

        independencies = Independencies()
        for variable in variables if isinstance(variables, (list, tuple)) else [variables]:
            non_descendents = set(self.nodes()) - {variable} - set(dfs(variable))
            parents = set(self.get_parents(variable))
            if non_descendents - parents:
                independencies.add_assertions([variable, non_descendents - parents, parents])
        return independencies
コード例 #28
0
ファイル: BayesianModel.py プロジェクト: Sayan-Paul/kod
    def get_independencies(self, latex=False):
        """
        Compute independencies in Bayesian Network.

        Parameters
        ----------
        latex: boolean
            If latex=True then latex string of the independence assertion
            would be created.

        Examples
        --------
        >>> from pgmpy.models import BayesianModel
        >>> student = BayesianModel()
        >>> student.add_nodes_from(['diff', 'intel', 'grades', 'letter', 'sat'])
        >>> student.add_edges_from([('diff', 'grades'), ('intel', 'grades'), ('grade', 'letter'),
        ...                         ('intel', 'sat')])
        >>> student.get_independencies()
        """
        independencies = Independencies()
        for start in (self.nodes()):
            for r in (1, len(self.nodes())):
                for observed in itertools.combinations(self.nodes(), r):
                    independent_variables = self.active_trail_nodes(start, observed=observed)
                    independent_variables = set(independent_variables) - {start}
                    if independent_variables:
                        independencies.add_assertions([start, independent_variables,
                                                       observed])

        independencies.reduce()

        if not latex:
            return independencies
        else:
            return independencies.latex_string()
コード例 #29
0
    def get_independencies(self, latex=False):
        """
        Computes independencies in the Bayesian Network, by checking d-seperation.

        Parameters
        ----------
        latex: boolean
            If latex=True then latex string of the independence assertion
            would be created.

        Examples
        --------
        >>> from pgmpy.models import BayesianModel
        >>> chain = BayesianModel([('X', 'Y'), ('Y', 'Z')])
        >>> chain.get_independencies()
        (X _|_ Z | Y)
        (Z _|_ X | Y)
        """
        independencies = Independencies()
        for start in (self.nodes()):
            rest = set(self.nodes()) - {start}
            for r in range(len(rest)):
                for observed in itertools.combinations(rest, r):
                    d_seperated_variables = rest - set(observed) - set(
                        self.active_trail_nodes(start, observed=observed)[start])
                    if d_seperated_variables:
                        independencies.add_assertions([start, d_seperated_variables, observed])

        independencies.reduce()

        if not latex:
            return independencies
        else:
            return independencies.latex_string()
コード例 #30
0
 def test_is_equivalent(self):
     ind1 = Independencies(["X", ["Y", "W"], "Z"])
     ind2 = Independencies(["X", "Y", "Z"], ["X", "W", "Z"])
     ind3 = Independencies(["X", "Y", "Z"], ["X", "W", "Z"],
                           ["X", "Y", ["W", "Z"]])
     self.assertFalse(ind1.is_equivalent(ind2))
     self.assertTrue(ind1.is_equivalent(ind3))
コード例 #31
0
 def test_is_equivalent(self):
     ind1 = Independencies(['X', ['Y', 'W'], 'Z'])
     ind2 = Independencies(['X', 'Y', 'Z'], ['X', 'W', 'Z'])
     ind3 = Independencies(['X', 'Y', 'Z'], ['X', 'W', 'Z'],
                           ['X', 'Y', ['W', 'Z']])
     self.assertFalse(ind1.is_equivalent(ind2))
     self.assertTrue(ind1.is_equivalent(ind3))
コード例 #32
0
 def test_eq(self):
     self.assertTrue(self.Independencies3 == self.Independencies4)
     self.assertFalse(self.Independencies3 != self.Independencies4)
     self.assertTrue(self.Independencies3 != self.Independencies5)
     self.assertFalse(self.Independencies4 == self.Independencies5)
     self.assertFalse(Independencies() == Independencies(["A", "B", "C"]))
     self.assertFalse(Independencies(["A", "B", "C"]) == Independencies())
     self.assertTrue(Independencies() == Independencies())
コード例 #33
0
 def test_eq(self):
     self.assertTrue(self.Independencies3 == self.Independencies4)
     self.assertFalse(self.Independencies3 != self.Independencies4)
     self.assertTrue(self.Independencies3 != self.Independencies5)
     self.assertFalse(self.Independencies4 == self.Independencies5)
     self.assertFalse(Independencies() == Independencies(['A', 'B', 'C']))
     self.assertFalse(Independencies(['A', 'B', 'C']) == Independencies())
     self.assertTrue(Independencies() == Independencies())
コード例 #34
0
    def test_build_skeleton(self):
        ind = Independencies(['B', 'C'], ['A', ['B', 'C'], 'D'])
        ind = ind.closure()
        skel1, sep_sets1 = ConstraintBasedEstimator.build_skeleton("ABCD", ind)
        self.assertTrue(self._edge_list_equal(skel1.edges(), [('A', 'D'), ('B', 'D'), ('C', 'D')]))

        sep_sets_ref1 = {frozenset({'A', 'C'}): (), frozenset({'A', 'B'}): (), frozenset({'C', 'B'}): ()}
        self.assertEqual(sep_sets1, sep_sets_ref1)

        model = BayesianModel([('A', 'C'), ('B', 'C'), ('B', 'D'), ('C', 'E')])
        skel2, sep_sets2 = ConstraintBasedEstimator.build_skeleton(model.nodes(), model.get_independencies())
        self.assertTrue(self._edge_list_equal(skel2, [('D', 'B'), ('A', 'C'), ('B', 'C'), ('C', 'E')]))

        sep_sets_ref2 = {frozenset({'D', 'C'}): ('B',),
                         frozenset({'E', 'B'}): ('C',),
                         frozenset({'A', 'D'}): (),
                         frozenset({'E', 'D'}): ('C',),
                         frozenset({'E', 'A'}): ('C',),
                         frozenset({'A', 'B'}): ()}
        # witnesses/seperators might change on each run, so we cannot compare directly
        self.assertEqual(sep_sets2.keys(), sep_sets_ref2.keys())
        self.assertEqual([len(v) for v in sorted(sep_sets2.values())],
                         [len(v) for v in sorted(sep_sets_ref2.values())])
    def test_build_skeleton(self):
        ind = Independencies(["B", "C"], ["A", ["B", "C"], "D"])
        ind = ind.closure()
        skel1, sep_sets1 = ConstraintBasedEstimator.build_skeleton("ABCD", ind)
        self.assertTrue(
            self._edge_list_equal(skel1.edges(), [("A", "D"), ("B", "D"),
                                                  ("C", "D")]))

        sep_sets_ref1 = {
            frozenset({"A", "C"}): (),
            frozenset({"A", "B"}): (),
            frozenset({"C", "B"}): (),
        }
        self.assertEqual(sep_sets1, sep_sets_ref1)

        model = BayesianModel([("A", "C"), ("B", "C"), ("B", "D"), ("C", "E")])
        skel2, sep_sets2 = ConstraintBasedEstimator.build_skeleton(
            model.nodes(), model.get_independencies())
        self.assertTrue(
            self._edge_list_equal(skel2, [("D", "B"), ("A", "C"), ("B", "C"),
                                          ("C", "E")]))

        sep_sets_ref2 = {
            frozenset({"D", "C"}): ("B", ),
            frozenset({"E", "B"}): ("C", ),
            frozenset({"A", "D"}): (),
            frozenset({"E", "D"}): ("C", ),
            frozenset({"E", "A"}): ("C", ),
            frozenset({"A", "B"}): (),
        }
        # witnesses/seperators might change on each run, so we cannot compare directly
        self.assertEqual(sep_sets2.keys(), sep_sets_ref2.keys())
        self.assertEqual(
            [len(v) for v in sorted(sep_sets2.values())],
            [len(v) for v in sorted(sep_sets_ref2.values())],
        )
コード例 #36
0
    def local_independencies(self, variables):
        """
        Returns an instance of Independencies containing the local independencies
        of each of the variables.

        Parameters
        ----------
        variables: str or array like
            variables whose local independencies are to be found.

        Examples
        --------
        >>> from pgmpy.models import DAG
        >>> student = DAG()
        >>> student.add_edges_from([('diff', 'grade'), ('intel', 'grade'),
        >>>                         ('grade', 'letter'), ('intel', 'SAT')])
        >>> ind = student.local_independencies('grade')
        >>> ind
        (grade _|_ SAT | diff, intel)
        """

        independencies = Independencies()
        for variable in (
            variables if isinstance(variables, (list, tuple)) else [variables]
        ):
            non_descendents = (
                set(self.nodes())
                - {variable}
                - set(nx.dfs_preorder_nodes(self, variable))
            )
            parents = set(self.get_parents(variable))
            if non_descendents - parents:
                independencies.add_assertions(
                    [variable, non_descendents - parents, parents]
                )
        return independencies
コード例 #37
0
ファイル: MarkovModel.py プロジェクト: EJHortala/books-2
    def get_local_independencies(self, latex=False):
        """
        Returns all the local independencies present in the markov model.

        Local independencies are the independence assertion in the form of
        .. math:: {X \perp W - {X} - MB(X) | MB(X)}
        where MB is the markov blanket of all the random variables in X

        Parameters
        ----------
        latex: boolean
            If latex=True then latex string of the indepedence assertion would
            be created

        Examples
        --------
        >>> from pgmpy.models import MarkovModel
        >>> mm = MarkovModel()
        >>> mm.add_nodes_from(['x1', 'x2', 'x3', 'x4', 'x5', 'x6', 'x7'])
        >>> mm.add_edges_from([('x1', 'x3'), ('x1', 'x4'), ('x2', 'x4'),
        ...                    ('x2', 'x5'), ('x3', 'x6'), ('x4', 'x6'),
        ...                    ('x4', 'x7'), ('x5', 'x7')])
        >>> mm.get_local_independecies()
        """
        from pgmpy.exceptions import RequiredError
        local_independencies = Independencies()

        all_vars = set(self.nodes())
        for node in self.nodes():
            markov_blanket = set(self.markov_blanket(node))
            rest = all_vars - set([node]) - markov_blanket
            try:
                local_independencies.add_assertions(
                    [node, list(rest), list(markov_blanket)])
            except RequiredError:
                pass

        local_independencies.reduce()

        if latex:
            return local_independencies.latex_string()
        else:
            return local_independencies
コード例 #38
0
 def test_closure(self):
     ind1 = Independencies(('A', ['B', 'C'], 'D'))
     self.assertEqual(ind1.closure(), Independencies(('A', ['B', 'C'], 'D'),
                                                     ('A', 'B', ['C', 'D']),
                                                     ('A', 'C', ['B', 'D']),
                                                     ('A', 'B', 'D'),
                                                     ('A', 'C', 'D')))
     ind2 = Independencies(('W', ['X', 'Y', 'Z']))
     self.assertEqual(ind2.closure(),
                      Independencies(
                          ('W', 'Y'), ('W', 'Y', 'X'), ('W', 'Y', 'Z'), ('W', 'Y', ['X', 'Z']),
                          ('W', ['Y', 'X']), ('W', 'X', ['Y', 'Z']), ('W', ['X', 'Z'], 'Y'),
                          ('W', 'X'), ('W', ['X', 'Z']), ('W', ['Y', 'Z'], 'X'),
                          ('W', ['Y', 'X', 'Z']), ('W', 'X', 'Z'), ('W', ['Y', 'Z']),
                          ('W', 'Z', 'X'), ('W', 'Z'), ('W', ['Y', 'X'], 'Z'), ('W', 'X', 'Y'),
                          ('W', 'Z', ['Y', 'X']), ('W', 'Z', 'Y')))
     ind3 = Independencies(('c', 'a', ['b', 'e', 'd']), (['e', 'c'], 'b', ['a', 'd']), (['b', 'd'], 'e', 'a'),
                           ('e', ['b', 'd'], 'c'), ('e', ['b', 'c'], 'd'), (['e', 'c'], 'a', 'b'))
     self.assertEqual(len(ind3.closure().get_assertions()), 78)
コード例 #39
0
ファイル: BayesianModel.py プロジェクト: EJHortala/books-2
    def get_independencies(self, latex=False):
        """
        Compute independencies in Bayesian Network.

        Parameters
        ----------
        latex: boolean
            If latex=True then latex string of the independence assertion
            would be created.

        Examples
        --------
        >>> from pgmpy.models import BayesianModel
        >>> student = BayesianModel()
        >>> student.add_nodes_from(['diff', 'intel', 'grades', 'letter', 'sat'])
        >>> student.add_edges_from([('diff', 'grades'), ('intel', 'grades'), ('grade', 'letter'),
        ...                         ('intel', 'sat')])
        >>> student.get_independencies()
        """
        independencies = Independencies()
        for start in (self.nodes()):
            for r in (1, len(self.nodes())):
                for observed in itertools.combinations(self.nodes(), r):
                    independent_variables = self.active_trail_nodes(
                        start, observed=observed)
                    independent_variables = set(independent_variables) - {
                        start
                    }
                    if independent_variables:
                        independencies.add_assertions(
                            [start, independent_variables, observed])

        independencies.reduce()

        if not latex:
            return independencies
        else:
            return independencies.latex_string()
コード例 #40
0
ファイル: MarkovModel.py プロジェクト: ankurankan/pgmpy
    def get_local_independencies(self, latex=False):
        """
        Returns all the local independencies present in the markov model.

        Local independencies are the independence assertion in the form of
        .. math:: {X \perp W - {X} - MB(X) | MB(X)}
        where MB is the markov blanket of all the random variables in X

        Parameters
        ----------
        latex: boolean
            If latex=True then latex string of the indepedence assertion would
            be created

        Examples
        --------
        >>> from pgmpy.models import MarkovModel
        >>> mm = MarkovModel()
        >>> mm.add_nodes_from(['x1', 'x2', 'x3', 'x4', 'x5', 'x6', 'x7'])
        >>> mm.add_edges_from([('x1', 'x3'), ('x1', 'x4'), ('x2', 'x4'),
        ...                    ('x2', 'x5'), ('x3', 'x6'), ('x4', 'x6'),
        ...                    ('x4', 'x7'), ('x5', 'x7')])
        >>> mm.get_local_independecies()
        """
        from pgmpy.exceptions import RequiredError
        local_independencies = Independencies()

        all_vars = set(self.nodes())
        for node in self.nodes():
            markov_blanket = set(self.markov_blanket(node))
            rest = all_vars - set([node]) - markov_blanket
            try:
                local_independencies.add_assertions([node, list(rest), list(markov_blanket)])
            except RequiredError:
                pass

        local_independencies.reduce()

        if latex:
            return local_independencies.latex_string()
        else:
            return local_independencies
コード例 #41
0
 def test_local_independencies(self):
     self.graph.add_edges_from([('a', 'b'), ('b', 'c')])
     independencies = self.graph.get_local_independencies()
     self.assertIsInstance(independencies, Independencies)
     self.assertEqual(independencies, Independencies(['a', 'c', 'b']))
コード例 #42
0
 def test_init(self):
     self.Independencies1 = Independencies(['X', 'Y', 'Z'])
     self.assertEqual(self.Independencies1, Independencies(['X', 'Y', 'Z']))
     self.Independencies2 = Independencies()
     self.assertEqual(self.Independencies2, Independencies())
コード例 #43
0
 def test_add_assertions(self):
     self.Independencies1 = Independencies(['X', 'Y', 'Z'])
     self.assertEqual(self.Independencies1, Independencies(['X', 'Y', 'Z']))
     self.Independencies2 = Independencies(['A', 'B', 'C'], ['D', 'E', 'F'])
     self.assertEqual(self.Independencies2, Independencies(['A', 'B', 'C'], ['D', 'E', 'F']))
コード例 #44
0
 def test_get_assertions(self):
     self.Independencies1 = Independencies(['X', 'Y', 'Z'])
     self.assertEqual(self.Independencies1.independencies, self.Independencies1.get_assertions())
     self.Independencies2 = Independencies(['A', 'B', 'C'], ['D', 'E', 'F'])
     self.assertEqual(self.Independencies2.independencies, self.Independencies2.get_assertions())
コード例 #45
0
class TestIndependencies(unittest.TestCase):
    def setUp(self):
        self.Independencies = Independencies()
        self.Independencies3 = Independencies(['a', ['b', 'c', 'd'], ['e', 'f', 'g']],
                                              ['c', ['d', 'e', 'f'], ['g', 'h']])
        self.Independencies4 = Independencies([['f', 'd', 'e'], 'c', ['h', 'g']],
                                              [['b', 'c', 'd'], 'a', ['f', 'g', 'e']])
        self.Independencies5 = Independencies(['a', ['b', 'c', 'd'], ['e', 'f', 'g']],
                                              ['c', ['d', 'e', 'f'], 'g'])

    def test_init(self):
        self.Independencies1 = Independencies(['X', 'Y', 'Z'])
        self.assertEqual(self.Independencies1, Independencies(['X', 'Y', 'Z']))
        self.Independencies2 = Independencies()
        self.assertEqual(self.Independencies2, Independencies())

    def test_add_assertions(self):
        self.Independencies1 = Independencies(['X', 'Y', 'Z'])
        self.assertEqual(self.Independencies1, Independencies(['X', 'Y', 'Z']))
        self.Independencies2 = Independencies(['A', 'B', 'C'], ['D', 'E', 'F'])
        self.assertEqual(self.Independencies2, Independencies(['A', 'B', 'C'], ['D', 'E', 'F']))

    def test_get_assertions(self):
        self.Independencies1 = Independencies(['X', 'Y', 'Z'])
        self.assertEqual(self.Independencies1.independencies, self.Independencies1.get_assertions())
        self.Independencies2 = Independencies(['A', 'B', 'C'], ['D', 'E', 'F'])
        self.assertEqual(self.Independencies2.independencies, self.Independencies2.get_assertions())

    def test_closure(self):
        ind1 = Independencies(('A', ['B', 'C'], 'D'))
        self.assertEqual(ind1.closure(), Independencies(('A', ['B', 'C'], 'D'),
                                                        ('A', 'B', ['C', 'D']),
                                                        ('A', 'C', ['B', 'D']),
                                                        ('A', 'B', 'D'),
                                                        ('A', 'C', 'D')))
        ind2 = Independencies(('W', ['X', 'Y', 'Z']))
        self.assertEqual(ind2.closure(),
                         Independencies(
                             ('W', 'Y'), ('W', 'Y', 'X'), ('W', 'Y', 'Z'), ('W', 'Y', ['X', 'Z']),
                             ('W', ['Y', 'X']), ('W', 'X', ['Y', 'Z']), ('W', ['X', 'Z'], 'Y'),
                             ('W', 'X'), ('W', ['X', 'Z']), ('W', ['Y', 'Z'], 'X'),
                             ('W', ['Y', 'X', 'Z']), ('W', 'X', 'Z'), ('W', ['Y', 'Z']),
                             ('W', 'Z', 'X'), ('W', 'Z'), ('W', ['Y', 'X'], 'Z'), ('W', 'X', 'Y'),
                             ('W', 'Z', ['Y', 'X']), ('W', 'Z', 'Y')))
        ind3 = Independencies(('c', 'a', ['b', 'e', 'd']), (['e', 'c'], 'b', ['a', 'd']), (['b', 'd'], 'e', 'a'),
                              ('e', ['b', 'd'], 'c'), ('e', ['b', 'c'], 'd'), (['e', 'c'], 'a', 'b'))
        self.assertEqual(len(ind3.closure().get_assertions()), 78)

    def test_entails(self):
        ind1 = Independencies([['A', 'B'], ['C', 'D'], 'E'])
        ind2 = Independencies(['A', 'C', 'E'])
        self.assertTrue(ind1.entails(ind2))
        self.assertFalse(ind2.entails(ind1))
        ind3 = Independencies(('W', ['X', 'Y', 'Z']))
        self.assertTrue(ind3.entails(ind3.closure()))
        self.assertTrue(ind3.closure().entails(ind3))

    def test_is_equivalent(self):
        ind1 = Independencies(['X', ['Y', 'W'], 'Z'])
        ind2 = Independencies(['X', 'Y', 'Z'], ['X', 'W', 'Z'])
        ind3 = Independencies(['X', 'Y', 'Z'], ['X', 'W', 'Z'], ['X', 'Y', ['W', 'Z']])
        self.assertFalse(ind1.is_equivalent(ind2))
        self.assertTrue(ind1.is_equivalent(ind3))

    def test_eq(self):
        self.assertTrue(self.Independencies3 == self.Independencies4)
        self.assertFalse(self.Independencies3 != self.Independencies4)
        self.assertTrue(self.Independencies3 != self.Independencies5)
        self.assertFalse(self.Independencies4 == self.Independencies5)
        self.assertFalse(Independencies() == Independencies(['A', 'B', 'C']))
        self.assertFalse(Independencies(['A', 'B', 'C']) == Independencies())
        self.assertTrue(Independencies() == Independencies())

    def tearDown(self):
        del self.Independencies
        del self.Independencies3
        del self.Independencies4
        del self.Independencies5
コード例 #46
0
 def test_is_equivalent(self):
     ind1 = Independencies(['X', ['Y', 'W'], 'Z'])
     ind2 = Independencies(['X', 'Y', 'Z'], ['X', 'W', 'Z'])
     ind3 = Independencies(['X', 'Y', 'Z'], ['X', 'W', 'Z'], ['X', 'Y', ['W', 'Z']])
     self.assertFalse(ind1.is_equivalent(ind2))
     self.assertTrue(ind1.is_equivalent(ind3))
コード例 #47
0
 def test_local_independencies(self):
     self.graph.add_edges_from([("a", "b"), ("b", "c")])
     independencies = self.graph.get_local_independencies()
     self.assertIsInstance(independencies, Independencies)
     self.assertEqual(independencies, Independencies(["a", "c", "b"]))
コード例 #48
0
from pgmpy.independencies import Independencies
# There are multiple ways to create an Independencies object, we
# could either initialize an empty object or initialize with some
# assertions.
independencies = Independencies() # Empty object
independencies.get_assertions()
independencies.add_assertions(assertion1, assertion2)
independencies.get_assertions()