def test_find_MAP(): print '-' * 80 G = MarkovModel() G.add_nodes_from(['x1', 'x2', 'x3']) G.add_edges_from([('x1', 'x2'), ('x1', 'x3')]) phi = [ DiscreteFactor(['x2', 'x1'], cardinality=[2, 2], values=np.array([[1.0 / 1, 1.0 / 2], [1.0 / 3, 1.0 / 4]])), DiscreteFactor(['x3', 'x1'], cardinality=[2, 2], values=np.array([[1.0 / 1, 1.0 / 2], [1.0 / 3, 1.0 / 4]])) ] # DiscreteFactor(['x1'], cardinality=[2], # values=np.array([2,2]))] G.add_factors(*phi) print "nodes:", G.nodes() bp = BeliefPropagation(G) bp.max_calibrate() # bp.calibrate() clique_beliefs = bp.get_clique_beliefs() print clique_beliefs print clique_beliefs[('x1', 'x2')] print clique_beliefs[('x1', 'x3')] # print 'partition function should be', np.sum(clique_beliefs[('x1', 'x3')].values) phi_query = bp._query(['x1', 'x2', 'x3'], operation='maximize') # phi_query = bp._query(['x1', 'x2', 'x3'], operation='marginalize') print phi_query sleep(52)
def find_MAP_val(G): ''' Inputs: - G: MarkovModel ''' bp = BeliefPropagation(G) bp.max_calibrate() clique_beliefs = bp.get_clique_beliefs() map_val = np.max(clique_beliefs.values()[0].values) return map_val
def find_MAP_state(G): ''' Inputs: - G: MarkovModel ''' bp = BeliefPropagation(G) bp.max_calibrate() clique_beliefs = bp.get_clique_beliefs() phi_query = bp._query(G.nodes(), operation='maximize') print phi_query return phi_query
def test_max_calibrate_clique_belief(self): belief_propagation = BeliefPropagation(self.junction_tree) belief_propagation.max_calibrate() clique_belief = belief_propagation.get_clique_beliefs() phi1 = Factor(['A', 'B'], [2, 3], range(6)) phi2 = Factor(['B', 'C'], [3, 2], range(6)) phi3 = Factor(['C', 'D'], [2, 2], range(4)) b_A_B = phi1 * (phi3.maximize(['D'], inplace=False) * phi2).maximize(['C'], inplace=False) b_B_C = phi2 * (phi1.maximize(['A'], inplace=False) * phi3.maximize(['D'], inplace=False)) b_C_D = phi3 * (phi1.maximize(['A'], inplace=False) * phi2).maximize(['B'], inplace=False) np_test.assert_array_almost_equal(clique_belief[('A', 'B')].values, b_A_B.values) np_test.assert_array_almost_equal(clique_belief[('B', 'C')].values, b_B_C.values) np_test.assert_array_almost_equal(clique_belief[('C', 'D')].values, b_C_D.values)
def test_max_calibrate_sepset_belief(self): belief_propagation = BeliefPropagation(self.junction_tree) belief_propagation.max_calibrate() sepset_belief = belief_propagation.get_sepset_beliefs() phi1 = Factor(['A', 'B'], [2, 3], range(6)) phi2 = Factor(['B', 'C'], [3, 2], range(6)) phi3 = Factor(['C', 'D'], [2, 2], range(4)) b_B = (phi1 * (phi3.maximize(['D'], inplace=False) * phi2).maximize(['C'], inplace=False)).maximize(['A'], inplace=False) b_C = (phi2 * (phi1.maximize(['A'], inplace=False) * phi3.maximize(['D'], inplace=False))).maximize(['B'], inplace=False) np_test.assert_array_almost_equal(sepset_belief[frozenset((('A', 'B'), ('B', 'C')))].values, b_B.values) np_test.assert_array_almost_equal(sepset_belief[frozenset((('B', 'C'), ('C', 'D')))].values, b_C.values)
def test_max_calibrate_sepset_belief(self): belief_propagation = BeliefPropagation(self.junction_tree) belief_propagation.max_calibrate() sepset_belief = belief_propagation.get_sepset_beliefs() phi1 = Factor(['A', 'B'], [2, 3], range(6)) phi2 = Factor(['B', 'C'], [3, 2], range(6)) phi3 = Factor(['C', 'D'], [2, 2], range(4)) b_B = (phi1 * (phi3.maximize(['D'], inplace=False) * phi2).maximize( ['C'], inplace=False)).maximize(['A'], inplace=False) b_C = (phi2 * (phi1.maximize(['A'], inplace=False) * phi3.maximize(['D'], inplace=False))).maximize( ['B'], inplace=False) np_test.assert_array_almost_equal( sepset_belief[frozenset((('A', 'B'), ('B', 'C')))].values, b_B.values) np_test.assert_array_almost_equal( sepset_belief[frozenset((('B', 'C'), ('C', 'D')))].values, b_C.values)
def test_max_calibrate_clique_belief(self): belief_propagation = BeliefPropagation(self.junction_tree) belief_propagation.max_calibrate() clique_belief = belief_propagation.get_clique_beliefs() phi1 = Factor(['A', 'B'], [2, 3], range(6)) phi2 = Factor(['B', 'C'], [3, 2], range(6)) phi3 = Factor(['C', 'D'], [2, 2], range(4)) b_A_B = phi1 * (phi3.maximize(['D'], inplace=False) * phi2).maximize( ['C'], inplace=False) b_B_C = phi2 * (phi1.maximize(['A'], inplace=False) * phi3.maximize(['D'], inplace=False)) b_C_D = phi3 * (phi1.maximize(['A'], inplace=False) * phi2).maximize( ['B'], inplace=False) np_test.assert_array_almost_equal(clique_belief[('A', 'B')].values, b_A_B.values) np_test.assert_array_almost_equal(clique_belief[('B', 'C')].values, b_B_C.values) np_test.assert_array_almost_equal(clique_belief[('C', 'D')].values, b_C_D.values)
def test_max_calibrate_sepset_belief(self): belief_propagation = BeliefPropagation(self.junction_tree) belief_propagation.max_calibrate() sepset_belief = belief_propagation.get_sepset_beliefs() phi1 = DiscreteFactor(["A", "B"], [2, 3], range(6)) phi2 = DiscreteFactor(["B", "C"], [3, 2], range(6)) phi3 = DiscreteFactor(["C", "D"], [2, 2], range(4)) b_B = (phi1 * (phi3.maximize(["D"], inplace=False) * phi2).maximize( ["C"], inplace=False)).maximize(["A"], inplace=False) b_C = (phi2 * (phi1.maximize(["A"], inplace=False) * phi3.maximize(["D"], inplace=False))).maximize( ["B"], inplace=False) np_test.assert_array_almost_equal( sepset_belief[frozenset((("A", "B"), ("B", "C")))].values, b_B.values) np_test.assert_array_almost_equal( sepset_belief[frozenset((("B", "C"), ("C", "D")))].values, b_C.values)
def test_max_calibrate_clique_belief(self): belief_propagation = BeliefPropagation(self.junction_tree) belief_propagation.max_calibrate() clique_belief = belief_propagation.get_clique_beliefs() phi1 = DiscreteFactor(["A", "B"], [2, 3], range(6)) phi2 = DiscreteFactor(["B", "C"], [3, 2], range(6)) phi3 = DiscreteFactor(["C", "D"], [2, 2], range(4)) b_A_B = phi1 * (phi3.maximize(["D"], inplace=False) * phi2).maximize( ["C"], inplace=False) b_B_C = phi2 * (phi1.maximize(["A"], inplace=False) * phi3.maximize(["D"], inplace=False)) b_C_D = phi3 * (phi1.maximize(["A"], inplace=False) * phi2).maximize( ["B"], inplace=False) np_test.assert_array_almost_equal(clique_belief[("A", "B")].values, b_A_B.values) np_test.assert_array_almost_equal(clique_belief[("B", "C")].values, b_B_C.values) np_test.assert_array_almost_equal(clique_belief[("C", "D")].values, b_C_D.values)