bp6 = belief_prop.query(variables=['y'], evidence={ 'marital': 1, 'loan': 1, 'contact': 1, 'month': 5 }) print(bp6['y']) #-----------------Sampling using GibbsSampling-------------------------- gibbs_chain = GibbsSampling(mark) gen = gibbs_chain.generate_sample(size=5) [sample for sample in gen] gibbs_chain.sample(size=4) for fact in mark.get_factors(): print(fact) data1 = data[[ 'marital', 'education', 'default', 'housing', 'loan', 'contact', 'month', 'poutcome', 'y' ]].copy() df = data1[0:5] #------------------Calculate mean and entropy using the samples generated above--------------------------- np.mean(df) scipy.stats.entropy(df)
class TestGibbsSampling(unittest.TestCase): def setUp(self): # A test Bayesian model diff_cpd = TabularCPD('diff', 2, [[0.6], [0.4]]) intel_cpd = TabularCPD('intel', 2, [[0.7], [0.3]]) grade_cpd = TabularCPD('grade', 3, [[0.3, 0.05, 0.9, 0.5], [0.4, 0.25, 0.08, 0.3], [0.3, 0.7, 0.02, 0.2]], evidence=['diff', 'intel'], evidence_card=[2, 2]) self.bayesian_model = BayesianModel() self.bayesian_model.add_nodes_from(['diff', 'intel', 'grade']) self.bayesian_model.add_edges_from([('diff', 'grade'), ('intel', 'grade')]) self.bayesian_model.add_cpds(diff_cpd, intel_cpd, grade_cpd) # A test Markov model self.markov_model = MarkovModel([('A', 'B'), ('C', 'B'), ('B', 'D')]) factor_ab = DiscreteFactor(['A', 'B'], [2, 3], [1, 2, 3, 4, 5, 6]) factor_cb = DiscreteFactor(['C', 'B'], [4, 3], [3, 1, 4, 5, 7, 8, 1, 3, 10, 4, 5, 6]) factor_bd = DiscreteFactor(['B', 'D'], [3, 2], [5, 7, 2, 1, 9, 3]) self.markov_model.add_factors(factor_ab, factor_cb, factor_bd) self.gibbs = GibbsSampling(self.bayesian_model) def tearDown(self): del self.bayesian_model del self.markov_model @patch('pgmpy.sampling.GibbsSampling._get_kernel_from_bayesian_model', autospec=True) @patch('pgmpy.models.MarkovChain.__init__', autospec=True) def test_init_bayesian_model(self, init, get_kernel): model = MagicMock(spec_set=BayesianModel) gibbs = GibbsSampling(model) init.assert_called_once_with(gibbs) get_kernel.assert_called_once_with(gibbs, model) @patch('pgmpy.sampling.GibbsSampling._get_kernel_from_markov_model', autospec=True) def test_init_markov_model(self, get_kernel): model = MagicMock(spec_set=MarkovModel) gibbs = GibbsSampling(model) get_kernel.assert_called_once_with(gibbs, model) def test_get_kernel_from_bayesian_model(self): gibbs = GibbsSampling() gibbs._get_kernel_from_bayesian_model(self.bayesian_model) self.assertListEqual(list(gibbs.variables), self.bayesian_model.nodes()) self.assertDictEqual(gibbs.cardinalities, { 'diff': 2, 'intel': 2, 'grade': 3 }) def test_get_kernel_from_markov_model(self): gibbs = GibbsSampling() gibbs._get_kernel_from_markov_model(self.markov_model) self.assertListEqual(list(gibbs.variables), self.markov_model.nodes()) self.assertDictEqual(gibbs.cardinalities, { 'A': 2, 'B': 3, 'C': 4, 'D': 2 }) def test_sample(self): start_state = [State('diff', 0), State('intel', 0), State('grade', 0)] sample = self.gibbs.sample(start_state, 2) self.assertEquals(len(sample), 2) self.assertEquals(len(sample.columns), 3) self.assertIn('diff', sample.columns) self.assertIn('intel', sample.columns) self.assertIn('grade', sample.columns) self.assertTrue(set(sample['diff']).issubset({0, 1})) self.assertTrue(set(sample['intel']).issubset({0, 1})) self.assertTrue(set(sample['grade']).issubset({0, 1, 2})) @patch("pgmpy.sampling.GibbsSampling.random_state", autospec=True) def test_sample_less_arg(self, random_state): self.gibbs.state = None random_state.return_value = [ State('diff', 0), State('intel', 0), State('grade', 0) ] sample = self.gibbs.sample(size=2) random_state.assert_called_once_with(self.gibbs) self.assertEqual(len(sample), 2) def test_generate_sample(self): start_state = [State('diff', 0), State('intel', 0), State('grade', 0)] gen = self.gibbs.generate_sample(start_state, 2) samples = [sample for sample in gen] self.assertEqual(len(samples), 2) self.assertEqual( {samples[0][0].var, samples[0][1].var, samples[0][2].var}, {'diff', 'intel', 'grade'}) self.assertEqual( {samples[1][0].var, samples[1][1].var, samples[1][2].var}, {'diff', 'intel', 'grade'}) @patch("pgmpy.sampling.GibbsSampling.random_state", autospec=True) def test_generate_sample_less_arg(self, random_state): self.gibbs.state = None gen = self.gibbs.generate_sample(size=2) samples = [sample for sample in gen] random_state.assert_called_once_with(self.gibbs) self.assertEqual(len(samples), 2)
class TestGibbsSampling(unittest.TestCase): def setUp(self): # A test Bayesian model diff_cpd = TabularCPD('diff', 2, [[0.6], [0.4]]) intel_cpd = TabularCPD('intel', 2, [[0.7], [0.3]]) grade_cpd = TabularCPD('grade', 3, [[0.3, 0.05, 0.9, 0.5], [0.4, 0.25, 0.08, 0.3], [0.3, 0.7, 0.02, 0.2]], evidence=['diff', 'intel'], evidence_card=[2, 2]) self.bayesian_model = BayesianModel() self.bayesian_model.add_nodes_from(['diff', 'intel', 'grade']) self.bayesian_model.add_edges_from([('diff', 'grade'), ('intel', 'grade')]) self.bayesian_model.add_cpds(diff_cpd, intel_cpd, grade_cpd) # A test Markov model self.markov_model = MarkovModel([('A', 'B'), ('C', 'B'), ('B', 'D')]) factor_ab = DiscreteFactor(['A', 'B'], [2, 3], [1, 2, 3, 4, 5, 6]) factor_cb = DiscreteFactor(['C', 'B'], [4, 3], [3, 1, 4, 5, 7, 8, 1, 3, 10, 4, 5, 6]) factor_bd = DiscreteFactor(['B', 'D'], [3, 2], [5, 7, 2, 1, 9, 3]) self.markov_model.add_factors(factor_ab, factor_cb, factor_bd) self.gibbs = GibbsSampling(self.bayesian_model) def tearDown(self): del self.bayesian_model del self.markov_model @patch('pgmpy.sampling.GibbsSampling._get_kernel_from_bayesian_model', autospec=True) @patch('pgmpy.models.MarkovChain.__init__', autospec=True) def test_init_bayesian_model(self, init, get_kernel): model = MagicMock(spec_set=BayesianModel) gibbs = GibbsSampling(model) init.assert_called_once_with(gibbs) get_kernel.assert_called_once_with(gibbs, model) @patch('pgmpy.sampling.GibbsSampling._get_kernel_from_markov_model', autospec=True) def test_init_markov_model(self, get_kernel): model = MagicMock(spec_set=MarkovModel) gibbs = GibbsSampling(model) get_kernel.assert_called_once_with(gibbs, model) def test_get_kernel_from_bayesian_model(self): gibbs = GibbsSampling() gibbs._get_kernel_from_bayesian_model(self.bayesian_model) self.assertListEqual(list(gibbs.variables), self.bayesian_model.nodes()) self.assertDictEqual(gibbs.cardinalities, {'diff': 2, 'intel': 2, 'grade': 3}) def test_get_kernel_from_markov_model(self): gibbs = GibbsSampling() gibbs._get_kernel_from_markov_model(self.markov_model) self.assertListEqual(list(gibbs.variables), self.markov_model.nodes()) self.assertDictEqual(gibbs.cardinalities, {'A': 2, 'B': 3, 'C': 4, 'D': 2}) def test_sample(self): start_state = [State('diff', 0), State('intel', 0), State('grade', 0)] sample = self.gibbs.sample(start_state, 2) self.assertEquals(len(sample), 2) self.assertEquals(len(sample.columns), 3) self.assertIn('diff', sample.columns) self.assertIn('intel', sample.columns) self.assertIn('grade', sample.columns) self.assertTrue(set(sample['diff']).issubset({0, 1})) self.assertTrue(set(sample['intel']).issubset({0, 1})) self.assertTrue(set(sample['grade']).issubset({0, 1, 2})) @patch("pgmpy.sampling.GibbsSampling.random_state", autospec=True) def test_sample_less_arg(self, random_state): self.gibbs.state = None random_state.return_value = [State('diff', 0), State('intel', 0), State('grade', 0)] sample = self.gibbs.sample(size=2) random_state.assert_called_once_with(self.gibbs) self.assertEqual(len(sample), 2) def test_generate_sample(self): start_state = [State('diff', 0), State('intel', 0), State('grade', 0)] gen = self.gibbs.generate_sample(start_state, 2) samples = [sample for sample in gen] self.assertEqual(len(samples), 2) self.assertEqual({samples[0][0].var, samples[0][1].var, samples[0][2].var}, {'diff', 'intel', 'grade'}) self.assertEqual({samples[1][0].var, samples[1][1].var, samples[1][2].var}, {'diff', 'intel', 'grade'}) @patch("pgmpy.sampling.GibbsSampling.random_state", autospec=True) def test_generate_sample_less_arg(self, random_state): self.gibbs.state = None gen = self.gibbs.generate_sample(size=2) samples = [sample for sample in gen] random_state.assert_called_once_with(self.gibbs) self.assertEqual(len(samples), 2)