コード例 #1
0
    def __log_result_csv(self, index, time):
        from pgportfolio.trade import backtest
        dataframe = None
        csv_dir = './train_package/train_summary.csv'
        json_dir = "./train_package/" + str(
            int(index)) + "/weight_history" + str(int(index)) + ".json"
        tflearn.is_training(False, self._agent.session)
        #evaluate on the test set
        v_pv, v_log_mean, benefit_array, v_log_mean_free =\
            self._evaluate("test",
                           self._agent.portfolio_value,
                           self._agent.log_mean,
                           self._agent.pv_vector,
                           self._agent.log_mean_free)

        #initialize backtest
        backtest = backtest.BackTest(self.config.copy(),
                                     net_dir=None,
                                     agent=self._agent)

        #method of trader, initialized by BackTest
        backtest.start_trading()
        #collects the result in a dic
        result = Result(
            test_pv=[v_pv],
            test_log_mean=[v_log_mean],
            test_log_mean_free=[v_log_mean_free],
            test_history=[''.join(str(e) + ', ' for e in benefit_array)],
            config=[json.dumps(self.config)],
            net_dir=[index],
            backtest_test_pv=[backtest.test_pv],
            backtest_test_history=[
                ''.join(str(e) + ', ' for e in backtest.test_pc_vector)
            ],
            backtest_test_log_mean=[np.mean(np.log(backtest.test_pc_vector))],
            training_time=int(time))
        new_data_frame = pd.DataFrame(result._asdict()).set_index("net_dir")
        historyweights = []
        for weight in backtest.test_updated_omega:
            historyweights.append(weight.tolist())
        backtesthistory = {"portfolioweights": historyweights}
        if os.path.isfile(csv_dir):
            dataframe = pd.read_csv(csv_dir).set_index("net_dir")
            dataframe = dataframe.append(new_data_frame)
        else:
            dataframe = new_data_frame
        if int(index) > 0:
            #writes everything in train_package/train_summary.csv and creates it
            dataframe.to_csv(csv_dir)

            #writes everything in train_package/int(index)/weight_history int(index).json
            with open(json_dir, 'w') as outfile:
                json.dump(backtesthistory, outfile)
        return result
コード例 #2
0
    def __log_result_csv(self, index, time, path):
        from pgportfolio.trade import backtest
        dataframe = None
        csv_dir = './train_package/train_summary.csv'
        tflearn.is_training(False, self._agent.session)
        v_pv, v_log_mean, benefit_array, v_log_mean_free = self._evaluate("test", self._agent.portfolio_value,\
                                                           self._agent.log_mean, self._agent.pv_vector,\
                                                           self._agent.log_mean_free)

        backtest = backtest.BackTest(self.config.copy(),
                                     self.stockList,
                                     self.featureList,
                                     self.start_date,
                                     self.end_date,
                                     self.fake_data,
                                     net_dir=None,
                                     result_path=path,
                                     agent=self._agent)  # 回测

        backtest.start_trading()
        result = Result(
            test_pv=[v_pv],
            test_log_mean=[v_log_mean],
            test_log_mean_free=[v_log_mean_free],
            test_history=[''.join(str(e) + ', ' for e in benefit_array)],
            config=[json.dumps(self.config)],
            net_dir=[index],
            backtest_test_pv=[backtest.test_pv],
            backtest_test_history=[
                ''.join(str(e) + ', ' for e in backtest.test_pc_vector)
            ],
            backtest_test_log_mean=[np.mean(np.log(backtest.test_pc_vector))],
            training_time=int(time))
        new_data_frame = pd.DataFrame(result._asdict()).set_index("net_dir")
        if os.path.isfile(csv_dir):
            dataframe = pd.read_csv(csv_dir).set_index("net_dir")
            dataframe = dataframe.append(new_data_frame)
        else:
            dataframe = new_data_frame
        if int(index) > 0:
            dataframe.to_csv(csv_dir)
        return result
コード例 #3
0
    def __log_result_csv(self, index, time):
        from pgportfolio.trade import backtest
        dataframe = None
        csv_dir = './train_package/train_summary.csv'
        tflearn.is_training(False, self._agent.session)
        v_pv, v_log_mean, benefit_array, v_log_mean_free =\
            self._evaluate("test",
                           self._agent.portfolio_value,
                           self._agent.log_mean,
                           self._agent.pv_vector,
                           self._agent.log_mean_free)

        backtest = backtest.BackTest(self.config.copy(),
                                     net_dir=None,
                                     agent=self._agent)

        backtest.start_trading()
        result = Result(test_pv=[v_pv],
                        test_log_mean=[v_log_mean],
                        test_log_mean_free=[v_log_mean_free],
                        test_history=[''.join(str(e)+', ' for e in benefit_array)],
                        config=[json.dumps(self.config)],
                        net_dir=[index],
                        backtest_test_pv=[backtest.test_pv],
                        backtest_test_history=[''.join(str(e)+', ' for e in backtest.test_pc_vector)],
                        backtest_test_log_mean=[np.mean(np.log(backtest.test_pc_vector))],
                        training_time=int(time))
        new_data_frame = pd.DataFrame(result._asdict()).set_index("net_dir")
        if os.path.isfile(csv_dir):
            dataframe = pd.read_csv(csv_dir).set_index("net_dir")
            dataframe = dataframe.append(new_data_frame)
        else:
            dataframe = new_data_frame
        if int(index) > 0:
            dataframe.to_csv(csv_dir)
        return result
コード例 #4
0
ファイル: tradertrainer.py プロジェクト: piccoqun/RLPortfolio
    def __log_result_csv(self, index, time):  # here the index is folder name
        from pgportfolio.trade import backtest
        dataframe = None
        csv_dir = './train_package/train_summary.csv'
        csv_weights = './train_package/%s/portfolio_weights.csv' % index

        tflearn.is_training(
            False, self._agent.session
        )  # specifying layers defined by testing instead of training

        weights = self._evaluate(
            "test", self._agent.portfolio_weights)  # here (66,339)

        v_pv, v_log_mean, benefit_array, v_log_mean_free =\
            self._evaluate("test",
                           self._agent.portfolio_value,
                           self._agent.log_mean,
                           self._agent.pv_vector,
                           self._agent.log_mean_free)

        backtest = backtest.BackTest(self.config.copy(),
                                     net_dir=None,
                                     agent=self._agent)

        backtest.start_trading()  # start showing steps and total assets

        # here weights is still (66,339)

        result = Result(
            test_pv=[v_pv],
            test_log_mean=[v_log_mean],
            test_log_mean_free=[v_log_mean_free],
            test_history=[''.join(str(e) + ', ' for e in benefit_array)],
            config=[json.dumps(self.config)],
            net_dir=[index],
            backtest_test_pv=[backtest.test_pv],
            backtest_test_history=[
                ''.join(str(e) + ', ' for e in backtest.test_pc_vector)
            ],
            backtest_test_log_mean=[np.mean(np.log(backtest.test_pc_vector))],
            training_time=int(time))

        new_data_frame = pd.DataFrame(result._asdict()).set_index("net_dir")
        if os.path.isfile(csv_dir):
            dataframe = pd.read_csv(csv_dir).set_index("net_dir")
            dataframe = dataframe.append(new_data_frame)
        else:
            dataframe = new_data_frame

        # portfolio weight: weights is a list with one element of np.array(66,339) in coin data [time, assets]

        self._asset_list.insert(0, 'RMB')
        self._time_index_test = self._time_index[-int(
            len(self._time_index) * self._test_portion - self.__window_size):]
        weight_df = pd.DataFrame(weights[0],
                                 index=self._time_index_test,
                                 columns=self._asset_list)

        if int(index) > 0:
            dataframe.to_csv(csv_dir)
            weight_df.to_csv(csv_weights)

        return result