def test_score_self(self): # read in records records = parse_input( os.path.join(self.parent_dir, 'data/test.score-long.txt'), self.hpo_network, self.alt2prim) # limit to records with HPO terms since many test cases don't have the sub-graph terms from tests/data/hp.obo input_records = [ x for x in records if x['record_id'] in ['213200', '302801'] ] results = self.scorer.score_records( input_records, input_records, half_product(len(input_records), len(input_records))) self.assertEqual(len(results), 3) # test the score of '213200' - '302801' self.assertAlmostEqual(float(results[1][2]), 0.3758, 2)
def score(input_file, output_file='-', records_file=None, annotations_file=None, custom_disease_file=None, ages_distribution_file=None, self=False, summarization_method='BMWA', scoring_method='HRSS', threads=1): """ Scores similarity of provided HPO annotated entries (see format below) against a set of HPO annotated dataset. By default scoring happens against diseases annotated by the HPO group. See https://hpo.jax.org/app/download/annotation. Phenopy also supports scoring the product of provided entries (see "--product") or scoring against a custom records dataset (see "--records-file). :param input_file: File with HPO annotated entries, one per line (see format below). :param output_file: File path where to store the results. [default: - (stdout)] :param records_file: An entity-to-phenotype annotation file in the same format as "input_file". This file, if provided, is used to score entries in the "input_file" against entries here. [default: None] :param annotations_file: An entity-to-phenotype annotation file in the same format as "input_file". This file, if provided, is used to add information content to the network. [default: None] :param custom_disease_file: entity Annotation for ranking diseases/genes :param ages_distribution_file: Phenotypes age summary stats file containing phenotype HPO id, mean_age, and std. [default: None] :param self: Score entries in the "input_file" against itself. :param summarization_method: The method used to summarize the HRSS matrix. Supported Values are best match average (BMA), best match weighted average (BMWA), and maximum (maximum). [default: BMWA] :param scoring_method: Either HRSS or Resnik :param threads: Number of parallel processes to use. [default: 1] """ try: obo_file = config.get('hpo', 'obo_file') except (NoSectionError, NoOptionError): logger.critical( 'No HPO OBO file found in the configuration file. See "hpo:obo_file" parameter.' ) sys.exit(1) if custom_disease_file is None: try: disease_to_phenotype_file = config.get( 'hpo', 'disease_to_phenotype_file') except (NoSectionError, NoOptionError): logger.critical( 'No HPO annotated dataset file found in the configuration file.' ' See "hpo:disease_to_phenotype_file" parameter.') sys.exit(1) else: logger.info( f"using custom disease annotation file: {custom_disease_file}") disease_to_phenotype_file = custom_disease_file logger.info(f'Loading HPO OBO file: {obo_file}') hpo_network, alt2prim, disease_records = \ generate_annotated_hpo_network(obo_file, disease_to_phenotype_file, annotations_file=annotations_file, ages_distribution_file=ages_distribution_file ) # parse input records input_records = parse_input(input_file, hpo_network, alt2prim) # create instance the scorer class try: scorer = Scorer(hpo_network, summarization_method=summarization_method, scoring_method=scoring_method) except ValueError as e: logger.critical(f'Failed to initialize scoring class: {e}') sys.exit(1) if self: score_records = input_records scoring_pairs = half_product(len(score_records), len(score_records)) else: if records_file: score_records = parse_input(records_file, hpo_network, alt2prim) else: score_records = disease_records scoring_pairs = itertools.product( range(len(input_records)), range(len(score_records)), ) results = scorer.score_records(input_records, score_records, scoring_pairs, threads) with open_or_stdout(output_file) as output_fh: output_fh.write('\t'.join(['#query', 'entity_id', 'score'])) output_fh.write('\n') for result in results: output_fh.write('\t'.join(str(column) for column in result)) output_fh.write('\n')
def run_phenoseries_experiment(outdir=None, phenotypic_series_filepath=None, min_hpos=2, min_entities=4, phenoseries_fraction=1.0, scoring_method="HRSS", threads=1, omim_phenotypes_file=None, pairwise_mim_scores_file=None): if outdir is None: outdir = os.getcwd # load HPO network # data directory phenopy_data_directory = os.path.join(os.getenv("HOME"), ".phenopy/data") # files used in building the annotated HPO network obo_file = os.path.join(phenopy_data_directory, "hp.obo") disease_to_phenotype_file = os.path.join(phenopy_data_directory, "phenotype.hpoa") hpo_network, alt2prim, _ = generate_annotated_hpo_network( obo_file, disease_to_phenotype_file, ages_distribution_file=None) # read the phenotypic series file as a DataFrame psdf = pd.read_csv( phenotypic_series_filepath, sep="\t", comment="#", names=["PS", "MIM", "Phenotype"], ) # null phenotypes are actually null MIM id fields, so just drop these psdf = psdf.dropna().sample(frac=phenoseries_fraction, random_state=42) psdf.reset_index(inplace=True, drop=True) # create a dictionary for phenotypic series to list of omim ids mapping ps2mimids = {} for ps, mim_ids in psdf.groupby(["PS"])["MIM"]: # more than two mims in a ps if len(mim_ids) >= 2: ps2mimids[ps] = list(set([int(mid) for mid in mim_ids.tolist()])) # invert the ps2mimid dictionary for easy lookup of which ps a mim belongs to mim2psids = {} for mim_id, ps in psdf.groupby(["MIM"])["PS"]: mim2psids[int(mim_id)] = ps.tolist() fields_to_use = [ "text", "description", "otherFeatures", "biochemicalFeatures", "diagnosis", "clinicalFeatures", ] if omim_phenotypes_file == "": logger.info("Scraping OMIM Diseases text") mim_texts = {} for mim_id in mim2psids: mim_response = request_mimid_info(mim_id) try: mim_info = mim_response.json() except AttributeError: break mim_text = mim_info["omim"]["entryList"][0]["entry"][ "textSectionList"] all_mim_text = "" for text_section in mim_text: section_name = text_section["textSection"]["textSectionName"] if section_name in fields_to_use: # unique_section_names.add(section_name) all_mim_text += " " + text_section["textSection"][ "textSectionContent"] mim_texts[mim_id] = all_mim_text # instantiate txt2hpo's Exctractor class to perform named entity recognition extractor = Extractor(remove_negated=True, max_neighbors=3, correct_spelling=False) # loop over the MIM ids and extract hpo ids from each MIM's text fields mim_hpos = {} for mim_id in mim2psids: mim_hpos[mim_id] = extractor.hpo(mim_texts[mim_id]).hpids mimdf = pd.DataFrame() mimdf["omim_id"] = list(mim2psids.keys()) mimdf["hpo_terms"] = mimdf["omim_id"].apply( lambda mim_id: mim_hpos[mim_id]) mimdf.to_csv(os.path.join(outdir, "omim_phenotypes.txt"), index=False, sep='\t') else: logger.info("You passed an OMIM disease to phenotype file") try: mimdf = pd.read_csv(omim_phenotypes_file, sep="\t") mimdf["omim_id"] = mimdf["omim_id"].astype(int) mimdf["hpo_terms"] = mimdf["hpo_terms"].apply(literal_eval) mim_hpos = dict(zip(mimdf["omim_id"], mimdf["hpo_terms"])) except FileNotFoundError: sys.exit("Please provide a valid file path") # do we need this? # mim_hpos = {mim_id: hpos for mim_id, hpos in mim_hpos.items()} # clean up HPO ids in lists for mim_id, hpo_ids in mim_hpos.items(): mim_hpos[mim_id] = convert_and_filter_hpoids(hpo_ids, hpo_network, alt2prim) # remove entities (mims) that have less than min_hpos mims_to_remove = [] for mim_id, hpo_ids in mim_hpos.copy().items(): if len(hpo_ids) <= min_hpos: mims_to_remove.append(mim_id) # Now remove the entities (mim ids) with less than min_hpos experiment_ps2mimids = {} # remove these mims from ps for ps, mimids in ps2mimids.copy().items(): experiment_ps2mimids[ps] = [] for ps_mim_id in mimids: if ps_mim_id not in mims_to_remove: experiment_ps2mimids[ps].append(ps_mim_id) # After removing entities, make sure the series has min number of entities # get lists of mims and their PS remove_these_ps = [] for ps, mimids in experiment_ps2mimids.items(): if len(mimids) < min_entities: remove_these_ps.append(ps) for psid in remove_these_ps: del experiment_ps2mimids[psid] # Create a unique list of entity ids, for scoring later experiment_omims = set() for psid, mim_ids in experiment_ps2mimids.items(): for mim in mim_ids: experiment_omims.add(mim) experiment_omims = list(experiment_omims) # make a DataFrame for entity ids mimdf = pd.DataFrame() mimdf["omim_id"] = experiment_omims mimdf["hpo_terms"] = mimdf["omim_id"].apply( lambda mim_id: mim_hpos[mim_id]) if pairwise_mim_scores_file == "": scorer = Scorer(hpo_network, scoring_method=scoring_method) records = [{ "record_id": mim_id, "terms": convert_and_filter_hpoids(hpo_terms, hpo_network, alt2prim), "weights": {}, } for mim_id, hpo_terms in dict( zip(mimdf["omim_id"], mimdf["hpo_terms"])).items()] results = scorer.score_records(records, records, half_product(len(records), len(records)), threads=threads) pairwise_scores = pd.DataFrame( results, columns=["mimid1", "mimid2", "phenopy-score"]) # convert to square form pairwise_scores = pairwise_scores.set_index(["mimid1", "mimid2"]).unstack() # This pandas method chain fills in the missing scores of the square matrix with the values from the transpose of df. pairwise_scores = (pairwise_scores["phenopy-score"].reset_index( drop=True).fillna( pairwise_scores.T.droplevel(0).reset_index( drop=True)).set_index(pairwise_scores.index, drop=True)) # reindex with the mimdf index pairwise_scores = pairwise_scores.reindex(mimdf["omim_id"].tolist()) pairwise_scores = pairwise_scores[mimdf["omim_id"].tolist()] pd.DataFrame(pairwise_scores).to_csv(os.path.join( outdir, 'phenoseries.psim_matrix.txt'), sep='\t') else: pairwise_scores = pd.read_csv(pairwise_mim_scores_file, sep='\t') ranksdf = make_rank_dataframe( pairwise_scores.astype(float).values, mimdf, experiment_ps2mimids) ranksdf.to_csv(os.path.join(outdir, "phenoseries.rankdf.txt"), sep="\t")